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Chapter I

PRELIMINARIES

This introductory chapter is devoted to a short recall

of some advanced concepts and theorems from functional analysis,

centered around the compactness properties of bounded convex sets

in reflexive Banach spaces and geometric properties of uniformly

convex and strictly convex Banach spaces. Fundamental and well-

known results are stated without proofs which can easily be found

in standard textbooks of functional analysis, e.g. in M. M. Day

[4], G. Koethe [6] or K. Yosida [8]. Little-known technical

lemmas and some novel results which can be found only in original

papers are provided with proofs.

i.

S(x,r)

at x

Uniformly convex Banach spaces.

In a given real or complex Banach space X, B(x,r) and

will denote, respectively, the ball and the sphere centered

of radius r,

B(x,r): (y_:Jlx-yll-_r}; s(x,r)= (y_:i]x-yll= r].

Definition i.i (Clarkson [3]). A Banaeh space X is

called uniformly convex (uniformly rotund_ in the terminology of

[4]) if for any _ > 0 there is a 6= 5(_) > 0 such that if

llxJl= IIyil = i _d lix-yll _-_, then II½(x+y)lJ_- i-8.

In other words, X is uniformly convex if for any two

points x,y on the unit sphere S(O,I) the midpoint of the segment

joining x to y can be close to but not on that sphere only
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if x and y are sufficiently close to each other.

It is easily seen that any Hilbert space is uniformly

convex. To showthis_ it suffices to recall that in a Hilbert

space the equality

llx+yll2 + llx-yll2 = 2111xll2+Ilyli2)

holds for any pair of vectors x_y. Hence it easily follows that

may be chosen equal to _2/8.

It is well known (see Clarkson [3]) that for i < p < +_

the spaces ip of all infinite (real or complex) sequences

(ci, c2,... ) such that

Z IciIp< +_
i=l

are uniformly convex. For p = i this is no longer true - in

the space iI the midpoint of the segment joining points

(170,0,...), (0,i,0,...) of the unit sphere also lies on that

sphere. Similarly, the example of points (i_i_0_0_...)_

(0_i_i_0_...) shows that neither the space i_ of all bounded

sequences (el, c2,... ) with the norm equal to sup [Icil:i =

i_2_...)_ nor the space c o of all sequences in i_ such that

c. _0 as i _+_ with the same norm_ are uniformly convex.l

In a set S let be given a _-algebra of subsets on

which a nontrivial measure _ is defined. Let LP(_) be the
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space of all a-measurable functions x whose p-th powers are

a-integrable, provided with the usual norm

Ifxll: (/IxlP_)Vp
s

It is known (see Clarkson [3]) that for i < p < +_ the space

LP( _ is uniformly convex. In particular, for the Lebesgue

measure in a compact interval _ of the real line the space

LP(_) of all Lebesgue measurable functions whose p-th powers are

Lebesgue integrable is uniformly convex. And it may be easily

seen that this fails to be true for p = i as well as for the

space C(_) of all functions continuous in _, provided with

the norm of the uniform convergence.

It is worth mentioning that the uniform convexity is

not a topological property, but rather a metrical one. For in-

stance, the two-dimensional vector space R × R is uniformly con-

vex when endowed with the usual Euclidean norm, but fails to

possess this property when endowed with the norm il(cl, c2)II =

ICll + Ic21, although these two norms are equivalent.

The followingtwo lemmas are immediate consequences of

Definition I.i.

Lemma I.i. If X is a uniformly convex Banach space,

then, for any d _ 0 and g _ O, the inequalities Ilxll__ d,

liyli_- d, Ilx-yli__ g imply that

fl½(x+y)ll-_(1-_(_/d))d.
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Proof. It is easily _een that by a proper dilation or

contraction our Lemma reduces to the following statement: if

i
IIxll= i, IlYll_ i and Nx-yll _ 8, then II_(x+y)II _ i-5(8).

We can choose points yl,y 2 on the unit sphere in such

a manner that

Y : hYl + _2Y2(_l,_>-o,_f_2: i),llx-yill>_-_,llx-y211___.

(The straight line through Yl and Y2 should be a supporting

straight line at y of the ball B(x, Ilx-yll)_ by the known

properties of convex sets in Banach spaces_ such a straight line

always exists.) We have, therefore_

i i i i
ll½(x+y)ll_<-ll_l(Tx+Tyl)ll+ ll_2(_x+_y2)ll___i(i-5)+ _2(i-_1= 1-_,

and the proof is complete.

Lemma 1.2 (Schaefer [7]). Let X be a uniformly con-

vex Banach space. Then for any 8 > O_ d > 0 and ae(O_l) the

inequalities llxll<- d, IlYll-_ d and Ilx-yll>_-8 imply that

llO_+_yll __ (l-25(g/d)min (G,6))d (_ = l-s).

Proof. Without loss of generality we may assume that
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i
0 < o_ _- [. Then

_ 2c(1-_(_/d))d+ (_-c)d- (l-2cS(_/d))d

and the proof is complete.

2. Strictly convex Banach spaces

Definition 1.2 (Clarkson [3]). A Banach space X is

called strictly convex (rotund, in the terminology of [4]) if for

any pair of vectors x,y in X from ilx÷ylJ= ilxll+ JlyiJ it

follows that x = ky, k > 0 (or, in a trivial case, y = 0).

IlL I,It may be easily shown that none of spaces i ,c o

and C(_) is strictly convex. However, we have the following

general:

Proposition i.i (Clarkson [3]). Every uniformly con-

vex Banach space is strictly convex.

Proof. Suppose that 0 < Ilyll< IlxOI and llx÷ylJ=

Ilxil+IIyII.Setting k = lixII/liylI,we have

_.<llxll÷ifyil)--_.iJx÷yli---fix+_.yfi ÷ JJ(_,-1)xll _-_.(ifxlHJyil).

Hence, lix+xylJ: Ilxli+kliyli: 211xll

form convexity of X, if x _ ky,

On the other hand, by the uni-

½11x÷_.yfi< IJxll whichthen
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yields a contradiction and completes the proof.

3. Convex sets with normal structure

Let C be a convex bounded set in a Banach space X_

of diameter d. A point x in X is said to be diametral for

c if sup_Llx-y,:y_c_= d.

It is easily seen_ for instance, that in the Banach

[x(t);Ospace C[O,I] every poin_ of the convex and bounded set

x(t) _ i, x(O) = O, x(1) = 13 is diametral.

K

each bounded convex subset

point there exists a point

C.

Geometrically_

bounded and convex subset

less than the diameter of

taining C.

V

Definition 1.3 (Brodskii and Mil'man [i]). A convex set

in a Banach space X is said to have normal structure if for

C of K which contains more than one

x in C which is not diametral for

K has normal structure if for every

C of K there exists a ball of radius

C centered at a point of C and con-

The following proposition gives a large class of sets

with normal structure:

v

Proposition 1.2 (Brodskii and Mil' man [i]). Every convex

and compact set of a Banach space has normal structure.

Proof. Suppose that a compact and convex set K of a

Banach space X does not have normal structure. Let d > 0 be

I
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the diameter of K. Without loss of generality we may assume that

a_ points of K are diametral for K. We shall construct a se-

quence Xl,X2,... of points of K such that

(i.i) llxi-xkll= d (i,k= 1,2,...;iI k)

which will yield a contradiction with the compactness of K. To

this end we choose an arbitrary point xI in K and assume that

points Xl,...,x n have been already chosen and satisfy (i.i).

Since (xl+...+Xn)/n is a diametral point of K and K is com-

pact, we can find in K a point Xn+ I such that

Xl+... +x

llXn+l n nll = d.

Hence

d= il(Xn+l-Xl)+'''+(Xn+l'Xn)il __l(ilXn+l-xlli+...+ilXn+l-Xnil)= d
n

and therefore llXn+l-xiil: d for i : l,...,n.

It is obvious that if a convex set K has normal struc-

ture, then so does every convex subset of K. In particular, if

the whole space X has normal structure_ then so does any convex

set in X.

The above-mentioned example shows that the space C[O,l]

does not have normal structure. It is also easy to show that in

I
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.. _ i,the space co the convex bounded set [(el,e2,. ):0 _ ci

i = i_2,...] of the unit ball does not have normal structure.

Similar examples show that the spaces iI and LI do not have

normal structure either.

The following proposition exhibits a large class of

spaces with normal structure.

Proposition 1.3 (Edelstein [5], Browder [2]). Every uni-

formly convex Banach space X has normal structure.

Proof. Let C be a bounded convex set in X contain-

ing at least two different points xl,x 2. Let d be the diameter

i
of C and let x = (Xl+X 2 .o [ ) For any x in C we have

ilx-xJi _ d, llx-x2H _ d so that, by Lemma i.i,

liX-xoli__(l-8(ilXl-X211/d))_,

which means that C

d centered at x .
0

is contained in the ball of radius less than

4. Dual spaces and weak topology

For a given Banach space X, X will denote its first

conjugate (dual) space, i.e. the linear space of all linear con-

tinuous functionals u:X _ R (or C, if X is a complex

Banach space), endowed with the usual norm (we denote by (u,x)

the value u(x) of u at x):

llull: sup[l(u,_)i:llxll_-l}.
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Using X we introduce the weak topology in X in the

following way. For a given 8 > 0

,

ments u__..._uni of X , let

and a finite number of e!e-

V(Ul,...,Un;g) = [xEX:i(ui,x) l < g, i = l,...,n).

We denote by _u# the family of all sets V(Ul,...,Un;_ ) for any

choice of _ and any finite sequence Ul_...,u n. It may be easily

verified that _satisfies all assumptions of the definition of a

basis of neighborhoods of zero in a linear space. Thus_ the

following definition makes sense:

Definition 1.4. A topology defined by the basis _ of

neighborhoods of zero in X is called the weak topology of X.

It is easily seen that in this topology, which is

obviously coarser than the usual norm topology of X, a sequence

[Xn} C X converges weakly to x° in X if and only if

nl_m (u,xn) = (U,Xo)

for any u in X

necessarily bounded;

Every weakly convergent sequence [Xn] is

moreover, the norm of its limit is less than

or equal to lira inf [IXnlI.
n-_oo

The space X endowed with its weak topology is a

linear locally convex topological space. In the sequel by the

terms weakly closed set, weakly compact set, weak closure of a set
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etc. we shall meanclosed or compact set_ closure of a set etc.

in the weak topology. All usual topological terms will refer to

the norm topology of X, sometimes called the strong topology of

X.

Thenorm topology of a Banach space X and its weak

topology are equivalent if and only if X is of finite dimension.

In a Hilbert space X with the scalar product ( , ),

for any fixed vector y in X the formula

(12) u(x): (x,y)

defines an element u of X and conversely, for every u in

X there exists an uniquely determined element y_X such that

(1.2) holds true. Moreover, the norm llull of u is then equal

to IIYlI- For this reason X and X are usually completely

identified with each other.

For i _ p _ +_, in the space ip the general form of

a linear continuous functional u is given by an explicit formula_

(1.3) u[(cl,c2,.)]: Z d.c."" i i
i=l

with (dl,d2,...) in i q where i/p + l/q= i. Moreover, llull

is equal to the norm of (dl,d2,...) in iq. This allows one to

identify the dual space (IP) * with iq.

For a given measure g on a _-algebra of subsets of a

I
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set S_ the general form of a linear continuous functional u on

the space LP(_) (i _ p _ +_) is given by the formula

(1.4) u(x) = f_d_
S

where y is an element of the space Lq(_) (i/p + i/q = i) and

Iiull is equal to the norm of y in Lq(_). For this reason the

dual space (T,P(_))* is usually identified with the space Lq(_)

In the space iI every linear continuous functional u

is of the form (1.3) with (dl,d2,...) in the space I_ and the

corresponding norms are equal, so that the space (ii) * may be

identified with the space i_.

Similarly_ in the space LI(_) any linear continuous

functional u is of the norm (i. 4) with y essentially bounded

(i.e. bounded except possibly on a subset of S of measure zero)

in S. For this reason the dual space (LI(_)) * is identified

with the space L_(_) of all essentially bounded _-measurable

functions y on S with the norm equal to the "essential

supremum" of IYl •

By the classical Riesz theorem_ every linear continuous

functional u in the space C(A) is of the form

u(x(t)) : fx(t)dy(t)

A

where y(t) is a function of bounded variation on A. The norm



-12-

IIull is equal to the total variation of y(t) on A.

In the sequel we shall need the following simple property

of weakly convergent sequences in a Hilbert space.

Lemma 1.3. If in a Hilbert space X the sequence Ix ]
n

is weakly convergent to x, then for any y _ x;

(1.5) lim inf IlXn-Yll > lira inf IIXn-Xll.
n_oo n_oo

Proof. Since every weakly convergent sequence is

necessarily bounded_ both limits in (1.5) are finite. Thus, to

prove (1.5), it suffices to observe that in the relationship

NXn-ylI2 = IIXn-X+x-yIl2 = llXn-Xll2 + IIx-ylI2 + 2Re (Xn-X,x-y)

the last term goes to zero as n goes to infinity.

The following theorem states one of the fundamental re-

sults of the geometric theory of Banach spaces.

Theorem i.i (Mazur). Each closed convex set of a Banach

space is necessarily weakly closed.

Let C be a set in a Banach space X. The closure of

the set

{klXl+...+_Xk:kl,...,k k __ O, kl+...+k k : i_ Xl,...,XkeC)

I
I

I
I
I
I

I
I

I
I
I

I
I
I
I

I
I
I
I
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is called the convex closure (convex hull) of C and is denoted

by col C. It is easily seen that equivalently ccl C may be

defined as the smallest closed convex set in X which contains

C. In other words, an element x in X belongs to the convex

closure of C if and only if for any g > 0 there exist a

finite sequence of vectors xl,...,x k in C and a sequence

kl,...,_ of nonnegative real numbers such that

(_l+...+h_= i).

I

I

I

i

I

i
I

I

I
I

The following statement is a simple consequence of Theorem i.i.

Theorem 1.2. The weak closure of every bounded set of

a Banach space is contained in its convex closure.

Equivalently, if the sequence [Xn] converges weakly to

x_ then for every g > 0 and any positive integer m there is

a finite sequence kl,...,k k of nonnegative real numbers such

that

(_£'''+_k= i).

As a simple illustration of Theorem 1.2., consider in a

given compact interval A of the real line the sequence of func-

tions [sin nt]. By the classical Riemann-Lebesgue theorem, for

every function x(t) integrable in A we have

I
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lim _x(t)sin ntdt = O.
n _

a

In other words_ for every linear functional u in the space

LP(A) (i < p < +_) we have

lira u(sin nt) = 0 = u(O),
n-_=

i.e. the sequence [sin n_ is weakly convergent in LP(_) to

zero. It is easy to verify that the sequence

1 1 in (n+_) t

n(Sin t +...+ sin nt) = _-nl -.--_-, -

| smn _
L..

converges to zero in the norm topology of the space LP(_).

In the dual space X of a Banach space X the family

_i- of sets V (Xl,...,XnJ) = [ueX*" i(u,xi)i < g, i = 1,...,n}

(g > OjXl_..._XneX ) defines a basis of neighborhoods of zero of

a topology which is called the weak topology in X A sequence

[Un} C X converges weakly to u ° in X if and only if

lira (Un,X) = (Uo,X)
n-_=

for any x in X.
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5. Reflexive Banach spaces

For _ny fixed vector x in a B__uach space X 3 the

mapping of X into R (or C_ if X is a complex Banach space)

which to every u in X assigns the value (u,x) of u at x

is a linear continuous functional in the space X _ i.e. an ele-

ment of the space (X*)* **noted also as X Moreover_ the norm

of this functional is equal to the norm IIxlI. it may be easily

verified that the canonical mapping of X into X defined by

this correspondence between elements of X and linear continuous

.

functionals on X is linear and one-to-one. Therefore_ it is an

isometrical imbedding of X into X

Definition 1.5. A Banach space X

**
if the canonical imbedding of X into X

is called reflexive

is onto.

It is clear that every Hilbert space is reflexive. For

i _ p _ +_ the spaces ip and LP(_) are reflexive which follows

immediately from the general forms of linear continuous functionals

in those spaces. The space c is not reflexive Its dual space
O

c o is isometric to the space 11 and_ in turn_ the dual space of

the latter is isometric to the space i_ which is essentially

larger than c
O

The following theorem exhibits a large class of reflex-

ive Banach spaces.

Theorem 1.3 (Mi_ man, Pettis). Every uniformly convex

Banach space is reflexive.
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The fundamental property of reflexive Banach spaces is

stated in the following:

Theorem 1.4 (Bourbaki, Kakutani). A Banach space X is

reflexive if and only if its unit ball is weakly compact.

In other words_ a Banach space X is reflexive if and

only if it is locally (in the sense of the norm topology) weakly

compact.

From Theorems i.i and 1.4 it follows immediately that in

a reflexive Banach space every bounded closed and convex set is

weakly compact.

In a somewhat different way Theorem 1.4 may be stated

in the form of the following:

Theorem 1.5 (Smulyan, Eberlein). A Banach space X is

reflexive if and only if every bounded sequence of elements of X

contains a subsequence which is weakly convergent.

Theorems 1.4 and 1.5 look as though they were identical

but we have to notice that the weak topology, in general_ does not

satisfy any axiom of countability and therefore the weak compact-

ness is not necessarily equivalent to the weak sequential compact-

ness.

In general_ the weak topology in the dual space X of

a Banach space X is finer than the weak topology in X . It is

clear_ however_ that these two topologies coincide if the space X

I
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is reflexive.

6. Hilbert space structure in finite dimensional linear spaces

Let X be a (real_ for the sake of simplicity) n-dimen-

sional linear space and E = (el,...,en) a given

basis in X. Setting, for x = ± & no_e_+...+(_ en and u = kle_+i

•..+k e
n n _

<U,X> = kl(Zl+...+kn_n,

we define in X a scalar product and introduce in X the struc-

ture of a finite dimensional Hilbert (Euclidean) space which, as may

be easily verified, is topologically equivalent to any Banach

space structure in X (actually, all Banach space structures in

a finite dimensional linear space are equivalent to each other)•

The dual space X of the space X is defined in a

purely algebraic manner as a linear space of all linear mappings

of X into R and has the same dimension as X. Introducing in

X the dual basis E = (el,...,en) defined by the conditions

(ei,e j) = 5ij (i,j = l,...,n),

we can identify every element u = klel+...+kne n

corresponding element u = kle_...+k± e of X.nn

identification, for each x in X_ we have

9@
of X with the

Under this

(U_X) = <U_X>.



-18-

Therefore, we can always consider a finite dimensional

.
linear space X as a Euclidean space, treat its dual space X

as identical to X and,the bilinear form (u,x) as equal to the

scalar product in X.

7. Adj oint mappings

Let L be a linear mapping defined in a linear subspace

D(L) of a Banach space X with values in the dual space X L

is said to be densely defined if the subspace D(L) is dense in

X.

For a given densely defined linear mapping L'D(L) _ X

and each given x in X, the formula

LxY = (Ly,x) for all y in D(L)

defines a linear mapping Lx:D(L ) _ R. The set D(L*) C X of all

elements x of X for which Lx is a bounded mapping, is a

linear subspace of X. By the Hahn-Banach theorem, for every x

in D(L*) there exists in X a uniquely determined element L x

such that LxY = (L x,y) for all y in D(L), i.e.,

(1.6) (Ty,x) --(Tx,y)

for all y in D(L) and all x in D(L*).

It is easily seen that the mapping L "D -+ X de-

fined for every x in D(L*) by formula (1.6), is linear. L is
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called the adjoint mapping of the mapping L.

A linear mapping L:D(L) _ X is said to be closed if

its graph is a closed subset of X X X . If L is not closed_

it is said to be closeable if there exists a linear closed mapping

L' "D(L' ) _ X containing L, i.e. such that D(L) C D(L' ) and

L = L' in D(L). The closure of a closeable densely defined

linear mapping L:D(L) _ X is the (uniquely determined) least

closed linear mapping containing L.

A linear densely defined mapping L:D(L) _X is close-

able if and only if its adjoint mapping L is densely defined.

The adjoint mapping L of a densely defined linear

mapping L is always closed. If a densely defined linear mapping

.
L is closeable so that the adjoint mapping L is densely de-

fined_ we may form the second adjoint mapping L = . If

**
L is closed_ then L = L.
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Nevertheless for nonexpansive mappings a quite general

and useful theory of fixed points can be constructed. Its funda-

mental result is contained in the following:

Theorem 2.1 (Kirk[13]). If C is a convex closed and

bounded set with normal structure of a reflexive Banach space X_

then every nonexpansive mapping U:C _ C has a fixed point.

Simple examples show that Theorem 2.1 fails to be true

without the assumption that C has normal structure and that the

c de-
space X is reflexive. For instance, the mapping U:c ° o

fined above maps the unit ball in c into itself but, as we have
o

seen, does not have fixed points. Similarly (Kirk [3]), the map-

ping U:C[O,I] _C[O,I] which to every function x(t) continuous

in [0,i] assigns the function tx(t) is nonexpansive and maps

the convex and closed bounded set

C = [x(t):O __x(t) __ i, x(O) = O, x(1) = i]

into itself. However, the unique fixed point of U, the function

x(t) = O, does not belong to C.

The proof of Theorem2.1 will consist of two parts. In

the first_ using the assumption of the reflexivity of the space X

but without using the nonexpansivity of the mapping U, we shall

prove the existence of a minimal closed and convex subset of C

invariant under U. In the second, it will be shown that the

normal structure of C and the nonexpansivity of U imply that
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such a minimal invariant set cannot contain more than one element

which_ therefore_ is necessarily a fixed point of U.

Denote by ¢ the family of all convex closed and non-

empty subsets C' of C such that U(C') C C'. The family ¢

is nonemptysince C belongs to it. In an obvious manner ¢ may

be ordered (partially) by the relation of inclusion. It is easy

to showthat ¢ is inductive. To prove this_ consider an ordered

subfamily Y of ¢. The intersection

C* = II C'C'eY

is a convex closed and invariant subset of C. All sets C' in

Y are weakly closed (Theoremi.I) and the family Y has finite

intersection property. By weak compactnessof C (Theorem1.4)_ it

follows that C* is nonempty so that C* belongs to ¢ and is a

lower bound for Y.

Now_by the Kuratowski-Zorn lemma_there exists in ¢ a

Observe first that C is equal tominimal element_ say Co. o

ccl U(Co) since col U(Co) is contained in Co, closed convex

and invariant.

Supposethat the diameter d of Co is positive. Since

C has normal structure_ by Definition 1.3_ there exists in Co a

point x° such that Co C B(Xo_dI) for some dI < d. Let

C1 = [X_Co'C ° C B(X, dl) ] = C o N [qeC B(y'dl)]"
o

I
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CI is a convex and closed subset of Co, nonempty since Xo_C I.

The inequality di < d implies that CI is different from C o .

We shall prove that CI is invariant under U. Indeed, for x

in CI we have

IIux-uWI IIx-yll d1

Thus U(Co) C B(UX,dl). But then ecl U(Co) C B(UX, dl) and

finally C° C B(UX,dl) which means that UxcC I. Summing up_ CI

is an invariant closed convex subset of C which contradicts the
o

minimality of C
o

As an immediate consequence of Theorem 1.2 we have the

following:

Theorem 2.2 (Browder [3]). If U:C _C is a none×pan-

sire mapping of a convex closed and bounded set C in a uniformly

convex Banaeh space X into itself_ then U has a fixed point in

C.

Proof. By Proposition 1.3, C has normal structure,

and by Theorem 1.3, X is a reflexive space. Therefore_

Theorem 2.2 follows immediately from Theorem 2.1.

Let us observe that if the image U(C) of the set C

is compact, then Theorem 241 is a special case of the fixed point

theorem of Schauder. Similarly, if the mapping U is weakly

continuous, then it is a special case of the Tikhonov fixed point
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theorem. But even very simple nonexpansive mappings may fail to

possess these properties. For instance_ for an infinite dimen-

sional Banach space X the identity mapping of X into itself is

not compact and the mapping x -_ llxllXo, where x ° is an arbitrary

element of X with IIXolI = i, is not weakly continuous since the

norm is not a weakly continuous functional_ it is clear that com-

bining these two mappings one easily obtains a nonexpansive mapping

of X × X which is neither compact nor weakly continuous.

The following corollary which for isometrical mappings

has been proved in [9] is a slight modification of Theorem 2.1.

Corollary 2.1 (Kirk[iF]). If in Theorem 2.1 the con-

dition that C be bounded is replaced by the requirement that the

sequence S = [unx] be bounded for some x in C, then U has

a fixed point.

Proof. Let S C B(x,r) for some r _ 0.

longs to Bn = B x3r ) for n = i_2_.., so that

Then x be-

D: (U I")Bk)n c
n=l k=n

is a nonempty subset of C. Moreover, D is convex (as a union

of an increasing sequence of convex sets)_ bounded and invariant

under U. Therefore_ its closure D is a convex closed bounded

set mapped by U into itself. Hence_ applying Theorem 2.1_ we

conclude that U has a fixed point in D.

I
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The following example (Edelstein [i0]) shows that

Corollary 2.1 would no longer be true if we replaced the sequence

S by a subsequence. In the space 12 the mapping U:[Ck]

[e2_i/k_(ck-l)+l} does not have fixed points although, as it may

be easily verified, the sequence [un%0] converges to zero.

For strictly convex Banach spaces we have, in addition,

the following useful information on the set of fixed points of a

nonexpansive mapping.

Proposition 2.1. If C is a convex set of a strictly

convex Banaeh space X, then for every nonexpansive mapping

U:C _X the set

FU = [x¢C:Ux = x}

is convex and relatively closed in C.

closed, then FU is also closed.

Proof. If

joining xI and x2

In particular, if C is

xI_x2EFu, then for any x on the segment

we have

llxl-x211__llXl-mll+ llux-_211= llUxl-_xll+ llux-ux211__;IXl-xll+

+ IIx-x211: Ilxl-x211

and therefore

Ilxl-x211: Ilxl-Uxll+ IIux-x211,Ilxl-x!!= llxl-Uxll.



-28-

Hence_ by the strict convexity_ Ux lies on the segment joining

xI and x2_ and therefore x = Ux. The closedness of FU

follows immediately from the continuity of U.

Proposition 2.1 fails to be true without the assumption

of strict convexity as shown by the following example (DeMarr [8]).

On the plane R2 with the norm ll(a,b)11 = max [lal,lbl] the map-

ping U:(a,b) _ (Ibl,b) is nonexpansive and (i,i),(i,-i) are

fixed points of U while (i_0) is not a fixed point.

2. Isometric mappings

A mapping U:C _X of a set C in a Banach space X

into X is called isometric or an isometry if

iiux-uyil= llx-yll

for all x and y in C.

Since every isometry is a nonexpansive mapping_

Theorems 2.1 and 2.2 apply to isometries. It turns out_ however_

that for isometric mappings more precise information about their

fixed points is available. Namely3under rather general assumptions

on the set C there exists a uniquely determined point in C

which is a common fixed point for all isometries of C into it-

self. This is the so-called center of C which_following

Brodskii and Mi_ man [2]_ can be constructed by transfinite in-

duction in the following manner.

Let C be a closed convex and bounded subset of a

I
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Banach space X. Assume furthermore that C is weakly compact

(it is so, in particular 3 if X is reflexive (by Theorem 1.4) or

if C is compact). Finally, suppose that C has normal structure.

Note that_ by Proposition 1.2_ the latter assumption automatically is

satisfied if C is compact.

To begin with, we put CI = C. Let a be an ordinal

number and_ for all ordinal numbers _ < _, assume that nonempty

closed and convex (and therefore weakly closed) sets C_ have al-

ready been constructed and that C_ is a proper subset of C

whenever _ < _. The nonempty (by the weak compactness of C)

intersection

is a closed convex subset of C. If D has only one element, we

put C = D for all ordinal numbers y _ _. If not, let d be

the diameter of D. For any positive 8 _ d, the set

D(8) = [x_D:D C B(x,8)] = D O [I I B(y,8)]
y_D

is closed and convex_ and therefore weakly closed_ moreover,

5' < 8 implies that D(8') C D(8). From the weak compactness of

D (which is a weakly closed subset of a weakly compact set C and

therefore is itself weakly compact) it follows that there is

8o > 0 such that D(8o) _ _ and D(5) = _ for every 8 < 8o .
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= is
Now we put C D(5o). Since D has normal structure, C

a proper closed convex subset of D.

It is clear that the above construction defines a uniquely

determined transfinite sequence

I

I

I

(2.1) CI,C2,...,%,Co__I, ....

By the Kuratowski-Zorn lemma, from the properties of the elements

of (2.1) it follows that, beginning with some ordinal number 5,

all elements of (2.1) must be equal which is possible if and only

if C has exactly one element. This property determines a point

of C called the center of this set.

It should be observed that if X is a uniformly convex

Banach space, then the above construction reduces to one step only,

I

I

I

I

I

I
since already C2 cannot contain more than one element (see

N. A. Routledge [20] and V. L. Klee [15]). Indeed, if C2 = D(5o) = I

Ci($o) contained two distinct points xI and x2, then by the

argument already used in the proof of Proposition 1.3 it would be

easy to show that CI is contained in a ball centered at

i
x° = _" ±"_(x-+x2_ of a radius less than 5o - a contradiction with the

definition of C2.

I

I

I

Theorem 2.3 (Brodski[ and Mil'man [2]). The center of a

closed convex bounded and weakly compact subset C with normal

structure of a Banach space X is a common fixed point of all iso-

I

I

I
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metric mappings of C into itself.

Proof. It is clear that if in the above construction of

the set C all sets C_ (for _<_) are invariant under iso-

metrics of C; then so is the set D. Now_ it is easily seen that

the sets D(5) are also invariant. Indeed, if Ux_D($)

isometry U:D _ D, then there is y in D such that

and therefore llx-u-lyll > 5 which implies that x_D(5).

ular, C is invariant. Since C1 is invariant, by transfinite

induction all elements of sequence (2.1) are invariant sets under

all isometries of C into itself and this clearly implies that

the center of C has the same property.

for some

llux-yll> 5,

In partic-

3. Common fixed points of commuting nonexpansive mappings

A family [Uk)kc A of mappings of a set A into itself

is called commutative or Abelian if Uk% = U Uk for all k,_ in

A.

The well-known theorem of Markov [17] and Kakutani [2]

states that if [Lk]k_ A is a commutative family of linear con-

tinuous mappings of a compact set C of a linear locally convex

topological space X into itself, then there exists in C a

= for all keA. A similar resultpoint x ° such that Lkx ° x°

is valid for nonexpansive mappings. Namely, we have the following

(for further generalizations see [i]):
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Theorem 2.4 (Browder [4]). Let C be a bounded closed

subset with normal structure of a reflexive and strictly convex

Banach space X. If [Uk]ke A is a commutative family of non-

expansive mappings of C into itself_ then [Uk] has a common

fixed point in C. In particular_ every commutative family of

nonexpansive mappings of a bounded closed convex subset of a uni-

formly convex Banach space into itself has a common fixed point.

Proof. By Theorem 2.1 and Proposition 2.1, for every

k_A the set Fk of fixed points of the mapping Uk is nonempty

closed and convex_ and therefore weakly closed. To prove that the

intersection of all FX is nonempty_ it suffices to prove that

the family [Fk]ke A has finite intersection property.

Observe first that if xcFk for some k in A_ then

for any _A we have

uk(ux)= u (_xx)= u.x

which means that U maps FN into itself. Now_ to prove the

finite intersection property by induction with respect to the

number of sets_ assume that for a given sequence kl_..._km from

A the intersection

is nonempty.

F = FklN...OF km-1

We can consider Uk
m

as a nonexpansive mapping of F

I
I
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into itself and_ by Theorem 2.1_ conclude that the set F 0 Fk
m

is also empty.

The following result generalizes the Markov-Kakutani

theorem in another direction.

Theorem 2.5 (DeMarr [8]). Every commutative family

[Uk]k_ A of nonexpansive mappings of a compact subset C of a

Banach space X into itself has a common fixed point in C.

Proof. Using the strong compactness of C in place of

the weak one_ we can prove as in the proof of Theorem 2.1 that

there exists a minimal closed convex subset C of C which is
o

invariant under all mappings of the family [Uk]. If Co has

only one element_ then this element is clearly a common fixed

point for [Uk] and the proof is complete. If Co has more than

one element_ then by a similar argument we can prove that there

exists in Co a minimal compact (not necessarily convex) subset

K which is invariant under all mappings from [Uk].

If K has only one element, then the proof is complete.

Assume_ therefore,that the diameter d of K is positive. For

k in A_ Uk(K ) is a nonempty compact subset of K, invariant

under all mappings from [Uk] since for any _ in A we have

U (U k(K)) = Uk(U (K))) C UK(K).

Hence_ by the minimality of K_ Uk(K ) = K for every k in A.
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The diameter of the convex closure of K is also equal

to d. By Proposition 1.2_ therefore_ there exists dI < d such

x O in Co. Therefore_that K C B(Xo,dl).. for some

C1 = [X¢Co:KC B(X,dl)] = CO N [_¢C B(y'dl)]
o

is a nonempty closed convex subset of Co . The inequality dI < d

implies that C I is a proper subset of C o . Furthermore_ for any

k in A, by the nonexpansivity of UK, we have Uk(K) C B(Ux,d I)

for every x in CI. Therefore_ K C B(UX_dl) so that Ux is

also in CI. This means that CI is invariant under all mappings

from [Uk] which yields a contradiction with the minimality of

C and completes the proof.
o

4. Nonexpansive mappings and successive approximations

Trivial examples show that even in very simple cases the

sequence of successive approximations for a nonexpansive mapping

U_ unlike for contractive mappings_ may fail to be convergent.

It suffices_ for instance_ to take for U a rotation in the plane

around the origin of coordinates or a symmetry with respect to an

arbitrary straight line. However_ as pointed out by Krasnosel'skii

[16]_ in both examples one gets a convergent sequence of successive

approximations if instead of U one takes the auxiliary non-

expansive mapping ½(I+U)_ where I denotes the identical trans-

formation of the plane_ i.e., if the sequence [Xn] of successive

I
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approximations is defined not by the usual recursive formula

• = (n : 0,i,...)(2 2) Xn+i Uxn

but by the following one:

(2.3) Xn+ I = ½(Xn+UXn) (n = 0,i,...).

]

The mappings U and _(I+U) have the same set of fixed points, so

that the limit of a convergent sequence defined by (2.3) is neces-

sarily a fixed point of U.

More generally, if C is a convex set in a Banach space

X and the mapping U:C _C is nonexpansive, then for any _e(O,l)

the mapping

(2.4) % : _ + (1-_)u

is nonexpansive and has the same fixed points as U. Therefore,

the limit of a convergent sequence of successive approximations

for U , i.e. of a sequence [Xn] defined by the formula

: + (l-_)Ux (n : 0,i,...),(2.9) Xn+ 1 °Xn n

V

is necessarily a fixed point of U.

Unlike for contractive mappings, it may happen that a
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nonexpansive mapping has more than one fixed point. In this case_

it turns out_ the limit of a convergent sequence (2.5) can depend

on the choice of the initial point x and on _ as well
O

(see [21]).

If the mapping U:C _ C is nonexpansive_ then for any

positive integer n and any x in C we have

llun+ix-_xll = llU(Unx)-U(_-lx)ll __ ll_n-_-lxll

which means that the sequence [llun+ix-unxll] is nonincreasing.

Definition 2.2 (Browder and Petryshyn [6]). A non-

expansive mapping U:C _ C of a subset C of a Banach space X

into itself is called asymptotically regular if

nl_oo llun+lx-unxll = 0

for any x in C.

In other words_ U:C _ C is asymptotically regular if

for any x in C the sequence [Xn] of successive approximationso

defined by (2.2) is such that llXn+l-Xnll = llUXn-Xnll _ 0 as n _ _.

If C is a convex set_ then for a given nonexpansive map-

ping U:C _ C and a given _(0;i) we can consider the mapping

U defined by (2.4). Taking an x in C, we can form the
o

= [Unxo]_ defined by (2.5). SinceIxn]sequence

I
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llXn-U_nll= II_n-O_n-<1-_)UXnll= (l-_)IIXn-U_nLI,

the mapping U is asymptotically regular if and only if
cz

lim .,,liXn-UXnJr= 0n-+oo

for any x in C.

The concept of asymptotical regularity enables us to

state in a very simple form some basic properties of nonexpansive

mappings in uniformly convex Banach spaces.

Theorem 2.6 (Krasnosel'ski{ [16](for (_= 1), Schaefer [21]).

Let C be a convex set in a uniformly convex Banach space X.

Suppose that the mapping U:C _ C is nonexpansive and that the set

F = {x_C:Ux = x]

of fixed points of U is nonempty. Then, for each

mapping U is asymptotically regular.
c_

_(0,i), the

Proof. Let x be a given element of C and let __Ixn]O

be the sequence defined by (2._). Since UG is a nonexpansive

mapping, by the preceding remarks we have only to show that the non-

increasing sequence {IlXn-UXnil]goes to zero as n goes to infinity.

Suppose to the contrary that ilXn-UXnlI __ g > 0 (n : 0,1,...)

I
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and let y be an element of F. By the nonexpansivity of U we

have

(2.6) lly-UXnlI = llUy-UxnlI _ IlY-Xnll

so that_ by Lemma 1.2, there exists a 5 _ 0 such that

llY-Xn+llI = IIy-(_Xn+(l-_)UXn)II = ll_(Y-Xn)+(l-_)(y-Uxn)II

(i _)IIY Xnll

Hence

n _o

completes the proof.

Combining the preceding theorem with Theorem 2.2

obtain immediately the following:

IlY-XnlI -_0 as n-_ and by (2.6)also lly-UXnlI -_0 as

This implies that IIXn-UXnl I _ 0 and this contradiction

we

Corollary 2.2. If U is a nonexpansive mapping of a

bounded closed convex subset C of a uniformly convex Banach space

X into itself, then for any _(0,i) the mapping U is

asymptotically regular.

5. Demicompact nonexpansive mappings and successive approximations

Theorem 2.6 does not answer the question as to whether

the sequence of successive approximations formed for the mapping

U is convergent or not. Under additional assumptions on U the

positive answer to this question will follow from the theory of

I

I
I
I

I
I
I

I
I

I
I
I

I
I
I

I

I
I
I



-39-

demicompact mappings.

a subset

if whenever [Xn] C C is a bounded sequence and

vergent sequence_ then there exists a subsequence

convergent.

Definition 2.3 (Petryshyn [19]). A mapping U:C _ X of

C of a Banach space X into X is said to be demicompact

[Xn-UX ] is a con-n

[Xn. ] which is
1

When C lies in a finite dimensional subspace of X_ the

condition of the demicompactness is automatically satisfied. Simi-

larly; this condition is fulfilled whenever C is a compact subset

of X.

The requirement of the demicompactness seems to be very

restrictive. It turns out_ however_ that it is s_ill weak enough in

order to be satisfied for some broad classes of mappingsj as it is

shown by the following:

Proposition 2.2 (Petryshyn [19]). Each of the following

conditions is sufficient for a mapping U:C _X to be demicompact:

(a) U is compact_ i.e. maps bounded subsets of C

into relatively compact subsets of X;

(b) the range R(I-U)

mapping (I-U)-1

is closed and the inverse

exists and is continuous;

(d) X is a Hilbert space and for any x_y in C:

i 2

Re (Ux-Uy, x-y) ___IIUx-Uyll .

(c) X is a Hilbert space and for any x,y in C:

I 2
Re (Ux-Uy,x-y) ___Ix-yll ;
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Proof. In the case (a) the assertion is trivial since

if the sequence

convergent subsequence [Un.}
l

[Xn.} = [(Xn.-UXn.)+UXn.]"
I 1 i I

In the case (b) the assertion is also trivial"

[Xn] is bounded, then choosing from [UXn] a

one obtains a convergent sequence

if the

sequence [Xn-UXn] is convergent, then so is the sequence [Xn] =

[(l-u)-l(xn-UXn)].

In the case (c) observe that if [Xn-UXn } is a Cauchy

sequence_ then by the inequality

II(Xm-UXn)-(x-Uxn)ll2 = II(X-Xn)-(UXm-UXn)ll2

= IIx-xnll 2 - 2Re (Xm-Xn,UXm-UXn) + llUx-,Jxnll2 =>IIUx-Uxnll2

the sequence {UXn] is also a Cauchy sequence. As in the case (a)

this implies that the sequence [Xn] is convergent.

Finally, in the case (d) the assertion follows immediately

from the inequality

II(_m-UXn)-(_-UXn)ll2 = II(X-Xn)-(U_-m_n)ll2

= IIx-_nll2 - 2Re (Xm-Xn,UXm-UXn) + IlUxm-_JXn112->--II_m-Xn112"

Trivial examples in a one dimensional space show that

there is no connection between the demicompactness and the con-

tinuity of mappings. Nevertheless, mappings which are simultaneously

I
I

I
I
I

I
I

I
I
I
I

I
I
I
I

I
I
I
I



-41-

demicompact and continuous have an important topological property

expressed in the following"

Lemma 2.1. If a mapping U:C _X is continuous and

demicompact, then the mapping I-U maps closed bounded subsets

of C into closed subsets of X.

Proof. Let D be a closed bounded subset of C. If

y is in (I-U)(D)_ then there exists a sequence [Xn] C D such

that x -Ux _ y as n _ _ By the demicompactness of U, wen n

may assume that the sequence [Xn] converges to an element of D,

say_ to x. By the continuity of U it follows that x -Ux
n n

x-Ux so that y = x-Ux. This means that y is in (I-U)(D) and

completes the proof.

Let us observe that the identical mapping I_X _ X of

a Banach space X onto itself is demicompact if and only if X

is of finite dimension. On the other hand_ the mapping I-I

trivially maps closed sets into closed sets. Therefore_ the state-

ment made in [6] that the demicompactness of U is equivalent to

the requirement that I-U maps bounded closed sets into closed

sets is incorrect 3 even for continuous mappings.

Combining the asymptotic regularity with the demicompact-

ness or_ more generally, with the consequence of the demicompact-

ness and the continuity expressed in Lemma 2.1, we obtain the

following general criterion for the convergence of the sequence of

successive approximations.
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Theorem 2.7 (Browder and Petryshyn [6]). Let C be a

closed subset of a Banach space X. If the mapping U:C _C is

nonexpansive_ asymptotically regular and the mapping I-U maps

closed bounded subsets of C into bounded subsets of X (thus,

in particular, if U is demicompact) and if the set F of fixed

points of U in C is nonempty, then for any x in C the

sequence [unx] is convergent to a fixed point of U.

If_ in addition, C is bounded or, more generally, if

there exists an x in C such that the sequence [Unxo ] con-o

tains a bounded subsequence, then the assumption that F is a

nonempty set follows from the remaining assumptions and, therefore,

may be omitted.

Proof. For a y in F and any x in C, the sequence

[lly-Unxil) is nonincreasing. Hence, the sequence [unx} is

bounded. Denote by D the closure of the set [Unx: n = 1,2,...].

From the asymptotic regularity of U it follows that (I-U)(Unx) _0

as n _ so that O belongs to the closure of the set

(I-U)(D) and, therefore, to the set (I-U)(D) itself since D

n.

is closed. This means that there is a subsequence [U mx] which

converges to_ say, Yo such that (I-U)y ° = O; i.e., Yo = UYo"

Since the sequence [IlYo-Unxll} does not increase, Unx _ Yo as

n _ _. To complete the proof, it suffices to observe that if for

some x in C the sequence [unixo } is bounded, then from the
o

inequality

n. n.

li__x-__xoLl_ iix-xol[ (i: 1,2,...)

I
I
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it follows that the sequence

in
v,

n.

[U Ix:

n°

[U Ix] is also bounded, for any

and then to apply the above arglnnent to the set

i = 1,2,...] instead of the set [Dnx: n = 1,2,...].

The second part of Theorem 2. 7 may be considered as

X

equivalent to the statement that for a closed set C in a Banach

space X a nonexpansive mapping U:C _ C which is asymptotically

regular and such that I-U maps bounded closed subsets of C in-

to closed subsets of X has a fixed point if and only if there

exists in C an Xo such that the sequence [Unxo ] contains a

bounded subsequence. For arbitrary nonexpansive mappings but

under additional assumptions on the set C and the space X a

somewhat similar property is stated in the following:

Proposition 2.3 (Browder and Petryshyn [6]). Let C

a closed convex subset of a uniformly convex Banach space X.

nonexpansive mapping U:C _C has a fixed point in C if and

only if there exists an x ° in C such that the sequence

is bounded (or, equivalently, if and only if the sequence

is bounded for every x in C).

be

A

Proof. The necessity is trivial. The sufficiency

follows immediately from Corollary 2.1. Finally, the condition in

the bracket is an obvious consequence of the nonexpansivity of U.

Coming back to Theorem 2.6 we are now able to prove the

following criterion of the convergence of the modified sequence of

successive approximations.
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Theorem 2.8 (Browder and Petryshyn [6]).

be a nonexpansive mapping of a closed convex set C

convex Banach space X into itself. For _(0_i)_

Let U:C _ C

in a uniformly

let U be

defined by formula (2.4). If the mapping I-U maps closed bounded

subsets of C into closed subsets of X and if the set F of

fixed points of U is nonempty_ then for any _(0_i) and every

in C the sequence [_x] is convergent to a fixed point ofx

U.

Proof. By Theorem 2.6_ U is a nonexpansive asymptoti-

cally regular mapping of C into itself with the same set of

fixed points as U° From the identity

(2.7) I-U = (1-@)(I-U)
c_

it follows that I-U maps bounded closed subsets of C into

closed subsets of X. Thus 3 a straightforward application of

Theorem 2. 7 completes the proof.

It should be noticed that if C is a bounded set_ then

the assumption that the set F is nonempty follows directly from

Theorem 2.2 and_ therefore_ may be omitted.

From Lemma 2.1 it follows that Theorem 2.8 can be

applied_ in particular_ to demicompact nonexpansive mappings.

Hence_ by Proposition 2.3_ it can be applied as well to compact

nonexpansive mappings. For the latter we obtain in this way the

following:

I
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J

Corqllary 2.3 (Krasnosel'skii [16]). Let U:C _ C be

a nonexpansive mapping of a closed convex set C in a uniformly

convex Banach space X into itself. If the set U(C) is rela-

tively compact_ then for any G¢(O_I) and every x in C the

{_x] converges to a fixed point of U.sequence

Proof. The convex closure D of the set U(C) is a

compact subset of C_ obviously invariant under U. The restric-

tion of U to D satisfies the assumptions of the Schauder fixed

point theorem (and also the assumptions of Theorem 2.2) so that

U has at least one fixed point in D. Since U is a compact

mapping_ an application of Theorem 2.8 completes the proof.

A nontrivial generalization of Corollary 2.3 is given

by the following:

Theorem 2. 9 (Edelstein [ii]). If U:C _C is a non-

expansive mapping of a compact set C in a strictly convex Banach

space X into itself_ then for any _c(0_l) and every x in C

the sequence [_x] is convergent to a fixed point of U.

Proof. By the Schauder fixed point theorem, the set F

of fixed points of U is nonempty. By Proposition 2.1_ F is a

convex closed and hence compact subset of C.

Observe first that for x in C and y in F the

relationship

Hx-ytl = llu x-yll
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is possible if and only if x is a fixed point. Indeed, from

ilx-yil: li_x-yli: ii_(x-y)+(1-_>(u_-y>II_-_IIx-yll+(l-_>li_x-yli_ ilx-yli

it follows that

li_(x-y>+(l-G)(ux-y)ii= Gilx-yil÷(l-G)IIux-yll

and hence_ by the strict convexity of X_

Ux= x.

The functions

Ux = x so that

¢(x) = min [lix-Yii-liUcx-Yll:yaF], Y(x) = min [ilx-yll:ycF]

are continuous on C_ nonnegative and equal zero if and only if

xcF. Now, for a given x in C, the sequence [Y(_x)] in non-

increasing. If its limit were positive_ then by the compactness

of C the sequence [¢(_x)] would be bounded from below by a

positive constant# i.e. we would have

÷i
il_ x-yli_ li_x-yll- 5

for some 5 > 0 and n = 0,i,... which is clearly impossible.

Thus, _(_x) _ 0 as n _ _ and this means that the sequence

[_x] is necessarily convergent to an element of F and completes

the proof.

I
I
I
I

I
I
I

I
I

I
I

I
I
I
I

I
I
I
I



-47-

I

I

I

I

I

I

I

I

I
I

I
I
I

6. Weak convergence of successive approximations

So far we were concerned with the strong convergence of

the sequence of successive approximations. In what follows we

shall discuss similar problems for the weak convergence_ mainly

under the additional assumption that X is a Hilbert space.

h

Definition 2.3 (Browder and Petryshyn [6]). Let C be

a subset of a Banach space X. A mapping U:C _ X is called

demiclosed if for any sequence [Xn] C C which converges weakly

to an x in C the strong convergence of the sequence [UXn] to

a y in X implies that Ux = y.

In other words_ the mapping U:C _X is demiclosed if

its graph in C X X is closed in the Cartesian product topology

induced in C x X by the weak topology in C and the strong

topology in X.

From this definition it follows_ in particular_ that a

mapping U:C _X which is weakly continuous_ i.e. is continuous

from the weak topology of X to the weak topology of X_ is

necessarily demiclosed.

Similarly_ the following statement is an immediate con-

sequence of the above definition.

Proposition 2.4 (Browder and Petryshyn [6]). Let C be

a closed convex set in a Banach space X. Suppose that the mapping

U:C _C is asymptotically regular and that the mapping I-U is

demiclosed. Then for every x in C the weak limit of any weakly
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convergent subsequence of the sequence [Dnx} is a fixed point of

U.

In particular_ if X is reflexive and U has exactly

one fixed point y, then for every x in C the sequence [unx]

converges weakly to y.

• of a weaklyProof By Theorem i.i_ the weak limit x°
n.

convergent sequence [U ix] lies in C. By the asymptotic regu-

n.

larity, the sequence [(I-U)(U Ix)] is convergent to zero as

i _ _ so that_ by the demiclosedness of I-U, we have (l-U)i ° =

O, i.e. Ux ° = xo.

If U has at least one fixed point_ then for any x in

C the sequence [unx] is bounded. Therefore_ when X is reflexive_

there exists a subsequence of the sequence [Unx] which is weakly

convergent. If_ in addition_ U has exactly one fixed point y_

then every weakly convergent subsequence of [unx} converges

weakly to y and this means that the sequence [unx] itself con-

verges weakly to y.

Lemma 1.3 enables us to state the following useful prop-

erty of nonexpansive mappings in Hilbert spaces.

Proposition 2.5 (Browder [3]). In a Hilbert space X

for every nonexpansive mapping U:C _ X (C C X) the mapping I-U

is demiclosed.

Proof. Let Ixn} C C be a sequence which is weakly con-

-Ux _Yo as n _.vergent to an element x ° of C and let xn n

i

I
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Then we have

lim inf ilXn-XoJi -_lim inf iiUxn-UXoII = lirainf JfXn-Yo-UXoJl.
n_ n-,_ n-*_

Hence_ by Lemma 1.3_ Xo-UXo = Yo"

Using Proposition 2._ we shall prove now the following:

Theorem 2.10 (0pial [18]). Let C be a closed convex

set in a Hilbert space X and U:C _C a nonexpansive asymptoti-

cally regular mapping for which the set F of fixed points is non-

empty. Then for every x in C the sequence [unx] is weakly

convergent to a fixed point of U.

limit

Proof. For every y in F_ there exists the nonnegative

d(y) = lira ll_x-yll.
n .-> co

Furthermore_ for any d _ 0 the set

Fd = [y__F:d(y) __ d]

is a convex closed and bounded subset of

large enough. Therefore 3 since X

smallest 5 _ 0 for which the set

of exactly one element, say Yo,

F, nonempty if d is

is reflexive, there exists the

F 5 is nonempty. F 5 consists

since otherwise the midpoint of
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the segment joining two distinct elements of F (which belongs to

F_ by Proposition 2.1) would belong_ by the uniform convexity of

X_ to an F d with d < _.

We shall prove that the sequence [unx] converges weakly

to Yo" Suppose the contrary. Then there exists a weakly con-
n.

vergent subsequence [U mx] whose weak limit_ say yl_ is differ-

ent from Yo" By Propositions 2.4 and 2.5 Yl is an element of

F. On the other hand_ by Lemma 1.3_ we have

n° n°

= d(Yo) = lim IIU mX-Yol I > lim
i-_ i-_

llu_X-ylll: d(Yl)

which yields a contradiction with the definition of b and com-

pletes the proof.

By Theorem 2.6_ Theorem 2.10 applies in particular to

the modified sequence of successive approximations so that we have

the following result which for weakly continuous nonexpansive map-

pings has been proved in [21]:

Theorem 2.11. Let C be a closed convex subset of a

Hilbert space X and U:C _ C a nonexpansive mapping with a non-

empty set of fixed points. For an _(0_i)_ let Us be defined

Then for every x in C the sequence [_x] is weaklyby (2.4).

convergent to a fixed point of U.

It should be noticed that if C is bounded_ then by

Theorem 2.2 the existence of a fixed point of U follows from the

nonexpansivity of U so that then in Theorem 2.11 the assumption

I
I
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I
I

I

that the set F is nonempty may be omitted.

In conclusion, let us observe that all results of §§4-6

can be applied to equations of the type

I (2.8) x - Ux = y

I
I

I

where U:X _X is a nonexpansive mapping of a Banach space X in-

to itself and y is a given element of X. To this end, it is

sufficient to consider in place of U the mapping U :X _X de-
Y

fined by UyX = y+Ux, since every fixed point of Uy is a solu-

tion equation (2.8) and conversely.

I
7. Contractive approximations of nonexpansive mappings

I

I

Let C be a convex closed subset of a Banach space X

and U:C _C a nonexpansive mapping. For any k_[O,1) and any

x ° in C, the mapping

I
UkX = kUx + (l-k)x °

I

I

I

maps C into itself and is contractive with the Lipschitz constant

equal to k. For k sufficiently close to l, U is thus a
k

contractive approximation of the mapping U.

By the Banach contraction principle, for any kc[O,l)

I there exists in C a unique fixed point xk of the mapping Uk;

| xk : ku_ + (1-k)xo.

I
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Is Xk, for k sufficiently close to i, a good approximation of a

fixed point of U? A partial affi_aative answer to this question is

given by the following:

Theorem 2.12 (Browder [5]). Suppose that X is a Hilbert

space and that the set F of fixed points of the nonexpansive map-

ping U:C _ C is nonempty. Then

lim Xk = Yo'
k _ i

where vvo is the fixed point of U closest to x o

o

2 .i,

exists and is uniquely determined.

Without loss of generality we may assume that

have then

Proof. First of all let us observe that, by Proposition

F is a closed convex subset of C so that the point Yo

x = O. We
o

llxk/k-Yoll2= il_xk-%ll2 < llxk-Yoll2= •

Hence

llxkll2 - 2kRe (xk,Yo) + k211Yoll2 _ k2(llxkll2 - 2Re (Xk,Yo) + ilYoll2)

and finaliy_ after simple cancellations,

(l+k)IlXkll2 __2kRe (xk,Yo).

Since k < 1, we have therefore I1_112 Re (Xk,Yo)
and hence

(2.9) I1_11_-Ilyoll (o __k < 1).

I

I

I

I

I
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Suppose now that [xi] = [Xk.]
1

is a weakly convergent sequence and let

with k. -_+_ as i _+_
l

x be its limit. Since

lira IIxi-uxiiI = lim <l-ki>killxill : 0
i-_ i-+_

(ki _ 1 and the sequence [llxiil]

it follows that x is a fixed point of U.

we have_ in the limit_ llxll_ IIyolI so that

x = Yo" Since in the relationship

llyoll2 llxill2 Jlxi-yolJ2 += + llyoll2 2Re (xi-Yo-Yo)

is bounded)_ from Proposition 2.5

From inequality (2.9)

llxll= IlyolI and hence

the last term goes to zero as i _ +_ we conclude that the sequence

[xi] is strongly convergent to Yo"

To complete the proof_ suppose now that xk does not con-

verge strongly to Yo as k _ i. Then there exists a sequence

Ixk ] with k. _ i such that none of its subsequences is convergent• 1
1

to Yo" But by the reflexivity of the space X we can always choose

from [Xk. ] a weakly convergent subsequence and such a subsequence,
1

as we have shown_ is necessarily strongly convergent to Yo" This

contradiction completes the proof.

8. Extensions of nonexpansive mappings

Can a nonexpansive mapping U:C _X of a subset C of a

Banach space X into X be extended to a nonexpansive mapping of

X into itself? Since the pioneering work of Kirszbraun [14] this

natural question (in much more general setting - for nonexpansive

mappings of subsets of a metric space X into another metric space
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X') has been extensively discussed by several authors (for an ex-

tensive bibliography of this subject see a recent expository paper

[7]). Here we shall confine ourselves to showing that the answer

to this question is positive if X has the structure of a Hilbert

space.

The key role in our discussion will be played by the

following:

Theorem 2.13 (Kirszbraun [14]). If xl,...,Xm,X_,...,x_,p

are points of a finite dimensional Euclidean space X such that

(2.1o) llx:-x.li_ ilx.-x.II
z j l j

then there exists in X a point p'

llx_-p'll_-Llxi-pll

(i,j : l,...,m),

such that

(i = l,...,m).

In a more geometrical manner_ this theorem may be stated

= B[ = B(x[,ri) (i = l,...,m) be 2mas follows. Let B i B(xi,ri) , 1

balls in a finite dimensional Euclidean space X. Then if for the

distances of their inequalities (2.10) hold and if the intersection

of Bo (i = l,..._m) is nonempty, then so is the intersection of
1

B_ (i = l,...,m).
1

Proof(Schoenberg [22]). For every k _ O_ the set

P}_ = [P'EX:Iix'-D'IIi- <= Nllxi-Pli (i : l,...,m)]

is bounded_ closed and nonempty if k is sufficiently large. More-
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over_ _ _ k implies that P C Pk" Therefore_ there exists the

smallest nonnegative number _ for which the set P is nonempty.

If _ Z i, then the assertion of Theorem 2.13 is obviously true.

Suppose that _ > i and let p' be an element of P_.

Without loss of generality we can assume that

(2.11)

The element p' lies in the convex hull of the set [x[,...,x_]

since otherwise it would be possible to move p' slightly (in the

!

direction perpendicular to any hyperplane separating [x_j...,Xn]

and p') in a manner to decrease all distances llx[-p'll (i = 1,...k)

and thus to decrease G itself. Therefore,

k k

(2.12) P' = Z k.x' (kl'''''_O; Z k. = 1).1 1 1
i=l i=l

For i,j = l,...,k we have

ilxcxjll2 : llxcwp-xjll2 _-llxcpll2 + llxj-pll2 - 2(xi-p,xj-p)

and similarly

llx[-x_ll2 llx'_'II2 + llx_-p'll2 - 2(xpp,,x_-p,)

Combining these relations with (2.10) and (2.11), we obtain



(x_-p' x'-p' -p)' j ) > (xi-P,X j (i,j = l,...,k).

Therefore, by (2.12), we have

k k k

o: ilZ _.x:-p,II2 : iiZ _i(x_-P')II2 : Z _i_j(x_-p,x,-,)
i=l z 1 i=l i_j=l ' j p

>

k

Z _._..Cxi-p,xj-p]:
i_j=l I j

n

ilZ hi(xi-p)ii2.
i=l

This obvious contradiction completes the proof.

Now 3 using the standard compactness argument_ we are able

to extend this result to arbitrary Hilbert spaces and infinite

families of balls.

Theorem 2.14 (Valentine [23]). Let [B ](_A , [B_]c_A ,

B = B(xcz, r(_), B'(_= B(x_,r ) be two families of balls in a (real

or complex) Hilbert space X. If

X ! !il_-x_liiix_-x_li (_,_A)

and the intersection

section n B'
sea 5"

is nonempty_ then so is the inter-

Proof. Choose an index _ in A.
o

ball B' = B' is weakly compact. For every
o n o

B' N B' is a closed and convex subset of B'
o o

By Theorem 1.4, the

_gA_ the intersection

and_ therefore_ by

I
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Theorem i.i, it is a weakly closed subset of B'. Hence, to com-
o

plete the proof, it suffices to show that for every finite system

of indexes _l,...,_m in A the balls B! = B'
1 _.

1

(i = l,...,m)

and B' have a nonempty intersection.
O

To prove this, in turn, it suffices to consider the finite

dimensional subspace X' of X spanned by the centers of the balls

B_, Bi = B . (i = 0,...,m). If X is a real Hilbert space, then
l

X' is a finite dimensional Euclidean space. If X is a complex

Hilbert space, then the finite dimensional complex Hilbert space

X' with the scalar product ( , ) is isometric to X' endowed

with the scalar product <,> = Re ( , ). So, in both cases we can

consider X' as a finite dimensional real Euclidean space.

By assumptions, the balls X' _ B i (i = O,...,m) have a

nonempty intersection. By Theorem 2.13, the balls X' n B_ (i = O,
l

...,m) have also a nonempty intersection. Thcrcfore, so do the

balls B[ (i = O,...,m) and the proof is completed.
1

Applying Theorem 2.14, we can now easily state the follow-

ing general theorem on the existence of nonexpansive extensions for

nonexpansive mappings, proved by Kirszbraun [14] for finite dimen-

sional Euclidean spaces and then extended by Valentine [23] to

arbitrary Hilbert spaces.

Theorem 2.15. Let u:C _X be a nonexpansive mapping of

a subset C of a Hilbert space X into X. There exists a non-

expansive mapping U:X _ X such that its restriction to C is

identical with u.
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Proof. Suppose that

C C C' C' _ X. Let paX\C'

the families of balls

U is already defined in a set

Applying the preceding theorem to

[B(x,ilx-Pli)'x_C')(B(Ux,ilx-Pll)x_C']

we can choose a point p' in X such that

llux-p'll_ llx-pll

for every x in C'. Setting Up = p'_ we obtain a nonexpansive

mapping of the set C' U [p] into X.

It is now clear that the usual procedure based on the

Kuratowski-Zorn lemma will complete the proof.

Let us observe that applying Theorem 2.15 to the mapping

i

u = _v we can conclude that for every subset C of a Hilbert space

X and every mapping v:C _ X satisfying the Lipschitz condition

llv(x)-v(y)ll__Lilx-yil (x_y_C)

there exists a mapping V:X _ X satisfying the Lipschitz condition

with the same constant L and identical with v on C.
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Chapter

MONOTONE MAPPINGS IN

III

BANACH SPACES

i. Introduction

The theory of monotone mappings in Banach spaces is of a

very recent origin. Some special results which now can be stated

or interpreted in terms of this theory were obtained in the early

1950s for gradient mappings considered in the calculus of variations

in Banach spaces and were presented in the book of Vainberg [52] in

the context of the theory of variational methods for the study of

nonlinear operators and equations. In the late 1950s 3 still in the

spirit of Va_nberg's book 3 further new "fixed-point principles"

were established by Krasnosel'skii [34]3 Va_nberg and Kacurovskii

" [28][54] and Kacurovskii [27]3

The explicit definition of the monotone mapping of a Banach

space into its dual space which arose in a natural way from these

investigations and was first introduced in a short note of Kacurovski_

[29] (see also [30]) along with some simple properties of such map-

pings would have been only a formal and sterile step toward an

apparently more general but shallow and practically useless theory

if it were not followed (in the logical sense; actually preceded

by a few months) by the announcement in a short note of Vainberg

[53] of the first fixed point theorem for monotone mappings in

Hilbert spaces satisfying a Lipschitz condition. This clearly

showed that the theory of monotone mappings need not be restricted

to gradient mappings and can be based on more primary structural

properties of normed spaces.

About the same time but independently 3 monotone mappings in
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Hilbert spaces were studied by Zarantonello [5_] who proved that if

T is a monotone mapping of a Hilbert space H into itself and

satisfied a Lipschitz condition_ then the mapping I+T maps H on-

to H - a result which only formally differs from that of Va_nberg.

The turning point in the development of the theory of mono-

J

tone mappings was the extension of the Vainberg-Zarantonello theorem

to continuous monotone mappings in 1962 by Minty [42] whose success

was largely due to a skillful treatment of the problem in the con-

text of a still more primitive mathematical structure_ that of a

simple monotonicity relation induced in the space H X H by the

scalar product in the Hilbert space H. In his study, the natural

relationship between monotone mappings of H into itself and monotone

subsets of the space _ along with the assumption of continuity

proved quite adequate to yield sound conceptual foundations of the

new abstract theory. In addition_ exhibiting an intimate relation

between nonexpansive and monotone mappings_ which in the works of

Valnberg and Zarantonello appeared as a connection between contra-

tive and monotone Lipschitzianmappings_ Minty awoke the interest in

nonexpansive mappings and, in particular_ revived the Kirszbraun-

Valentine theorem which at that time_ lacking serious applications,

seemed to be doomed to oblivion.

One year later the Minty theorem was proved by Browder [i]

under a weaker condition on monotonicity and further_ in a series of

three notes [2]-[4]_ the latter weakened step by step the continuity

requirements up to a strangely weak assumption of the continuity from
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line segments in H to the weak topology in H.

The next important step in the development of the theory

of monotone mappings was its extension to reflexive Banach spaces

carried out by Browder [5] for separable reflexive spaces and_

slightly later but independently_ by Minty [43] without a separa-

bility assumption. Together with the above mentioned notes of

Browder_ this generalization laid down the topological foundations

of the theory_ became a typical model for further extensions and_

last but not least_ allowed one to embody in its general setting

special situations encountered in the abstract calculus of varia-

tions.

Further generalizations to densely defined mappings and

multi-valued mappings were given by Browder in [6], [8] (see also

[9], [16]) and [18], respectively. Recently, an analogous ex-

tension to a class of nonreflexive Banach spaces was given by

Browder [20].

In 1964, the joint effort of Kato [32] and Browder [i0]

shed a bright light on the connections between monotonicity of a

mapping and various continuity assumptions. From the conceptual

viewpoint the most important of their results seems to be a theorem

of Kato stating that in finite dimensional spaces the monotonicity

of a mapping and its continuity from line segments imply the con-

tinuity. It explains that_ when combined with the monotonicity_

this last continuity assumption is not so extremely weak as it might

seem.

Some of the basic results of the theory of monotone mappings

I
I
I

I
I
I

I
I

I
I
I

I
I
I
I

I
I
I
I



I

I

I

I

I

I

I

I

I

!

I

I

I

I

I

!

I

I

-6_-

in Banach spaces use very little of the normed space structure and

have, as pointed out in several places by Browder [7], [14], [i_]

(see also [25])_ natural generalizations to locally convex linear

spaces.

A new direction in the development of the theory of mono-

tone mappings - the study of nonlinear variational inequalities

for mappings defined on convex closed subsets of a Banach space_

was originated by a recent note of Browder [12] and a paper of

Hartman and Stampacchia [26] as a nonlinear generalization of linear

variational inequalities studied by Stampacchia [51], Lions and

Stampacchia [39] and Lescarret [37].

In his notes [22] and [23] Browder made an attempt to ela-

borate a unified approach to both the theory of monotone mappings

and that of nonlinear variational inequalities_ as well as to the

theory of direct methods of the calculus of variations in Banach

space s.

The variational methods of the theory of nonlinear operators

have been finding for years their most important applications in the

theory of nonlinear integral and partial differential equations.

Their applicability s however_ has been naturally restricted to prob-

lems with direct variational interpretations. In a natural way s

the theory of monotone mappings - an abstract generalization of

basic ideas of the variational methods - widened the class of such

problems. And every successive extension of this theory broadened

still further the domain of its applicability. Actually_ from the

very beginning s various attempts of the extension of the domain of
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applicability have been a driving factor in the development of the

abstract theory. So_ for instance_ its extension to densely defined

mappings arose from the study of parabolic boundary value problems

and the extension to nonreflexive spaces was obtained in an attempt

to embody in the theory of monotone mappings some elliptic boundary

value problems which could not be treated in the framework of re-

flexive spaces.

The possibility of application of the new abstract theory

to partial differential equations was first grasped by Browder who

in [1]-[5] and [7] attacked by these methods elliptic boundary value

problems. Later on, his study of elliptic equations was continued

by himself [ii], [15], [20], Leray and Lions [36] and by Hartman

and Stampacchia [26]. Applications to parabolic boundary value

problems were given by Browder in [6] and [8]. Ideas of the theory

of monotone mappings were also applied to hyperbolic systems and

wave equations by Lions [38] and Lions and Strauss [40], [41].

Applications to nonlinear equations of evolution were given by

Browder [9], [16] and Kato [33].

The extension of the theory to multi-valued mappings was

applied by Browder [18] to the study ofduality mappings in reflex-

ive Banach spaces which in the framework of the theory of single-

valued monotone mappings had been restricted in an earlier paper of

Browder [17] to strictly convex reflexive spaces.

A comprehensive survey lecture on these various applica-

tions was delivered by Browder at the 17th Symposium of the

American Mathematical Society in Applied Mathematics (New York_
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April, 1964) and then published in [19].

Applications of the theory of nonlinear monotone mappings

to integral equations were given by Zarantonello [55], Minty [44]

and Dolph and Minty [24].

The main _esult of the theory of monotone mappings is con-

tained in the statement that under very weak continuity assumptions

and some additional conditions on the behavior at infinity each

monotone mapping T of a reflexive Banach space X into its dual

space X* is necessarily surjective, i.e. maps X onto X*.

This means that for each given u ° in X*, the functional equation

Tx = u has a solution in X. One proves this basic property
o

first in finite dimensional Euclidean spaces, usually by a simple

index argument, and then carries it over to arbitrary reflexive

Banach spaces by a weak compactness argument. Additional technical

difficulties appear when mappings are defined only on subsets (con-

vex or dense) of the space X or when more sophisticated monoton-

icity conditions are considered.

In this technical aspect, the theory of monotone mappings

resembles that of compact mappings. This formal resemblance, how-

ever, goes much further as it is possible to extend in various

forms (see Browder [13] and [14]) to monotone mappings the Borsuk

antipodal theorem, the Leray-Schauder theorem on continuous con-

tinuation of fixed points and the Schauder theorem on invariance of

domain. Even more, it turns out that some basic results of both

theories can be treated in a unified form (see Browder [21]).

As in many other instances of similar type in functional
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analysis, the transition from finite dimensional subspaces of a

space X to the whole space carried through in proofs of main re-

sults of the theory of monotone mappings is non-constructive in

nature. It becomes constructive_ however_ under additional separa-

bility and regularity conditions on X and acquires in this case

many features of the orthogonal projection methods for solving

linear functional equations in Banach spaces. This constructive

aspect of the theory of monotone mappings was recently developed

by Petryshyn [47]-[50] (see also Kaniel [31]) in the framework of

the more general theory of so-called projectionally compact mappings.

2. Monotone sets

Let X be a Banach space over the field C of complex

numbers and X* its dual space_ i.e. the space of all linear con-

jugate continuous mappings of X into C. In an obvious manner

X may be considered as a Banach space X over the field R of

real numbers.

For any u in X*_ the formula

(3.1) _,x) : Re (u,x) for all x in X

defines a real linear functional u on X_ i.e. an element of the

dual space X*. This correspondence J:u-_ u is a one-to-one map-

ping of X* onto X* since for each given _ in X*, the formula

(3.2) (u,x) = _,x) + i(_,ix) for all x in X
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defines an element u of X which satisfies (3.1).

J and j-i are both linear and, by (3.1) and (3.2),

llJull_ llullforall u in X*

The mappings

Ilul./2__

This correspondence enables us to confine our study of

monotone mappings to real Banach spaces. Analogous results for

complex Banach spaces follow immediately from that study by a mere

replacement of the form (u,x) by Re (u,x) in all definitions

and statements of this chapter.

Let X be a Banach space (over the field of real numbers)

and X* its dual space. For an x in X and a u in X*,

[x3u ] will stand for the correspondent element of the Cartesian

product X X X*.

Definition 3.1. The set M C X X X* is called monotone

if for any pair Ix, u], [y,v] of elements of M,

(3.3) (u-v,x-y) _ 0.

M is said to be maximal monotone if it is monotone and maximal in

the fsmily of all monotone sets ordered by inclusion; i.e., if

for any monotone set N, M C N implies that M = N.

It is clear that, by the Kuratowski-Zorn lemma, for any

monotone set M there exists a maximal monotone set which con-

tains M. It is also clear that if M is a monotone (maximal

monotone) set, then for any positive k the set kM=

[[x, ku]:Kx,u]_M] is also monotone (maximal monotone).



-70-

Proposition 3.1 (Minty [46], Browder [14]). If M is a

maximal monotone set in X ×X*_ then for each u in X_ the

set

M = {x_:[x,u]_]
U

is a closed convex subset of X.

Proof. For each [y3v] in M, the set

M(y,v) = [x_:(v-u,x-y)__0)

is closed and convex. Since M is maximal monotone_

u = [y,v]_(y,v),

so that M is also closed and convex.
u

Let now X be a Hilbert space. Then X = X* and we can

define the mapping p:X 2 _ X setting p([x_u]) = u + x for all

[x,u] in X 2 .

Lemma 5.1. Let X be a Hilbert space. If M is a mono-

tone set in X2_ then the mapping p:M _ X is one-to-one.

Proof. If [x,u], [y,v] are in M and u + x = y + v,

then x - y = v - u so that

(_-v,_-y) = -tix-yli2 = -llu-_ll2.



-71-

I

I

I

I

I

I

I

I

I

I

I

I

I

Hence from (3.3) it follows immediately that x = y and u = v.

Proposition 3.2 (Minty [42]). Let X be a Hilbert space.

Then a monotone subset M of X 2 is maximal monotone if and only

if p(M) = X; i.e., if and only if p maps M onto X.

Proof. If p(M) = X, then the maximality of M follows

immediately from the preceding lemma.

To prove that the condition p(M) = X is also necessary

for the maximality of M 3 we define an auxiliary mapping q:p(M) _ X

as follows: by Lemma 3.1_ for any z in p(M) there is a uniquely

determined element [x,u] in M such that z = u + x; we set

q(z) = u - x. The mapping q is nonexpansive since from the identity

(3._) II(_-x)- (v-y)ll2 : 11(u+x)- (_+y)112- _(u-v,x-y),

for [x,u], [y,v] in M, it follows that

(3._) II(u-x)- (v-y)ll-_II(u+x)- (v+y)ll.

If p(M) _ X, then by Theorem2.1_ we can extend q to a non-

expansive mapping Q:X _X. Taking z in XXp(M) and setting

y = ½(Q(z)+z), v = ½(Q(z)-z),

we easily verify that the set M U {[y,v]] is monotone: for any

Ix,u] in M, inequality (3.5) and relationship (3.4) imply (3.3)
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This means that M cannot be maximal monotone if p(M) _ X and

completes the proof.

Let us remark that Lemma 3.1 is equivalent to the state-

ment that if M is a monotone subset of X2, then for any given

z in X, the representation

z = u + x with [x,u] in M,

if it exists_ is necessarily unique. Proposition 3.2 states that

M is maximal monotone if and Only if such a representation does

exist for each z in X.

Lemma 3.1 and Proposition 3.2 have a very simple geometrical

interpretation. To simplify the discussion_ let us consider in

some details the case X = R. We can identify R2 with the

Euclidean plane. By Definition 3.1_ a subset M of R2 is mono-

tone if and only if for any pair of points [x,u], [y_v] in M,

the inequality x N y implies that u N v. For instance_ the sets

MI = [[n+x,n]:n = 0,+-i,...;0 _-x -_i},

M2 = [[n,n+x-l]'n = 0,+i,...;0 __x __i]

are monotone and M I U M2

bothM1 _ _.

In other words 2

only if for any [x,u]

is a maximal monotone set which contains

M is a monotone subset of R2 if and

in M_ the set M lies in the two quadrants
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Q+(x,u) = ([y,v]:x-_y and u_-v}, Q-(x,u)= ([y,v]:y_x and v=<u}.

This clearly implies that by the rotation of angle -7F/4 around the

origin of coordinates the set M will become the graph of a function

(defined on a subset of R) satisfying the Lipschitz condition with

constant equal to i. And conversely_ the g_aph of any such function

by the rotation of angle 71-/4 will yield a monotone subset of the

plane R2. It is also clear that if the Lipschitzian function thus

associated with a monotone set M is defined on the whole real line

R_ then M is necessarily maximal monotone. And the Kirszbraun-

Valentine theorem implies that also the converse is true: if M is

maximal monotone, then the corresponding function is defined on R.

In the above examples, the maximal monotone set MI U M2

gives by rotation the graph of the function f(t) = -rain [It-n_'_ I"

n = 0,+_i,...]. Since in the case of an arbitrary Hilbert space X

the mapping

l_ _
--A(u_x)][x,u] _ [_(u+x),

plays the role of an analogous "rotation", it is clear that Lemma 3.1

and Proposition 3.2 reveal the same relationship between monotone

sets and Lipschitzian mappings which is almosttrivial and evident for

X = R.

3. Monotone mappings

In what follows _ will denote the strong convergence in

the Banach space X and -_ the weak* convergence in
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* C°its dual space X . For a set C in X_ will stand for its

interior.

Definition 3.2. A mapping T:C _ X is called hemicon-

tinuous if for any x in C, y in X and any sequence [tn]

of positive real numbers_ from x + tnY¢C (n = i_2,...) and tn _0

as n _ +_ it follows that T(X+tnY ) _ Tx.

If C is an open or convex set_ we can say equivalently

that the mapping T:C _X* is hemicontinuous if it is continuous

from line segments in X to the weak* topology in X.

Definition 3.3. A mapping T:C _X* is called monotone

if

(3.6) (Tx-Ty,x-y) >-0

for all x_y in C_ and strictly monotone if

(Tx-Ty,x-y) > 0

for all x_y in C_ x _ y.

Equivalently we can say that the mapping T:C _X is

monotone if its graph P = {[x,Tx]:x_C] is a monotone set in

X X X*.

X*Definition 3.4. A mapping T:C _ is called strongly

monotone if there exists a continuous positive function d(t) de-
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fined on R+ with lim d(t) = +_ as t -_+_ such that

(3.7) (T_-Ty,x-y)___(llx-yJl)llx-yll.

for all x,y in C.

Without loss of generality we may assume that the function

d(t) is strictly increasing, replacing, if necessary, d(t) by

t
d*(t) = _-_ min [d(s):t _ s]. Furthermore, if T is hemicontinuous,

from inequality (3.7) and from

ll_-_llllx-yll _ (Tx-Ty,x-y)

we conclude that necessarily d(O) = O.

The following apparently technical lemma states a basic

property of hemicontinuous and hemicontinuous monotone mappings.

Lemma 3.2 (Minty [ 42 ], Browder [12]). Let T:C _X be

a hemicontinuous mapping of a convex subset C of a Banach space

* in C and a u in X* the in-
X into X . Then, for an x ° o '

equality

(3.8) (TX-Uo,X-Xo) _ O for all x in C

implies that

(3.9) (TXo-Uo,X-Xo) __ 0 for all x in C.

i
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In particular, if (3.8) holds for an

If, in addition, the mapping

is equivalent to (3.9).

Proof. If T is monotone, then

CO, = u .x ° in then Tx ° o

T is monotone, then (3.8)

(3 .io) (Tx-TXo,X-Xo) a 0 for all x in C

so that inequality (3.8) follows from (3.9) by a simple addition of

(3.9) to (3.10).

If inequality (3.8) holds, then setting in it xt =

(l-t)Xo+tX (0 < t _ i) in place of x, we have

0 & (Txt-Uo,t(X-Xo)) : t(Txt-Uo,X-Xo).

Since t > 0 may be cancelled, we have

(Txt-Uo,X-Xo) _ O.

Letting now t _ O, by the weak* continuity of T on line

segments in C, we obtain in the limit inequality (3.9).

Finally, if x° is an interior point of C, then in-

equality (3.9) can obviously hold for all x in C if and only if

Tx -u = O.
o o

Let us observe that if T is a monotone mapping, inequality

(3.8) is equivalent to the assumption that the set P U [[Xo,Uo]],

with F = [[x_Tx]:x¢C], is monotone} i.e., that it is a monotone
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extension of the monotone set P. Therefore_ when C = X_ Lemma

3.2 may be interpreted as follows: the graph F of a hemicontinuous

monotone mapping T:X -, X* is necessarily a maximal monotone subset

of X × X*.

It has been already observed that for any monotone subset

.
M of X × X there exist maximal monotone sets containing M. In

particular_ this is true for the graph P of every monotone mapping

.

T:C -. X In this case, an important example of such a maximal mono-

tone set is given by the following:

Proposition 3.3 (Browder [12]). Suppose that T:C _ X* is

a hemicontinuous monotone mapping of a closed convex subset C of a

Banach space X into X and assume that the set C° is nonempty.

Then the set

G = [[x,tx+u]:x_C and (u,x-y) _ 0 for all y in C}

is a maximal monotone subset of X X X* containing the graph P of

the mapping T.

Proof. It is clear that F C G. G is a monotone set

since if [x, Tx+u], [y, Tx+v]_G, then

((_x+u)- (_+v),x-y)= (_x-_,x-y)+ (u,x-y)+ (v,y-x)_ o.

Suppose now that [Xo,Uo]aXx X_ and
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(Uo-U_Xo-X) __ 0

for all [x_u] in G. Without loss of generality we may assume

that OcC °. First of all we assert that x cC. Otherwise we would
o

have x ° = sy° for some Yo on the boundary of C and some s > i.

Let w ° _ 0 be an element of X* such that (Wo,Yo-y) _ 0 for all

y in C and (Wo,Yo) > 0 (such a Wo certainly does exist since

Yo lies on the boundary of the convex set C and 0 lies in the

interior of C). By the definition of G_ for every t > O_

[Yo,TYo+tWo] lies in G. Hence

0 _ (Uo-TYo-tWo,Xo-Yo) = (s-l)(Uo-TYo-tWo,Y o)

which is impossible since the right-hand side of this inequality

goes to -= as t goes to +_ This clearly implies that x eC.o

To complete the proof, observe now that since r C G, we

have

(TX-Uo,X-Xo) __ 0

for every x in C. Hence, by Lemma 3.2, for each x in C,

(TXo-Uo,X-Xo) _ O.

Therefore, u ° = Tx ° + u with (U,Xo-X) _ 0 for all x in C,

and this implies that [Xo, uo]¢ G which completes the proof.

II
II

I
I
II

II
I

I
I
Ii

I

I
II

II
I

I

II
I
II



I

I

I

I

I

I

I
I

I
I

I
i
I

I
I
I

I
I

-79-

As an immediate consequence of Proposition 3.3 we have

the following.

Proposition 3.4 (Browder [14]). Let C be a closed con-

vex subset of a Banach space X and T:C _ X & a hemicontinuous

mapping. Then for each given u° in X*_ the set

S(u o) = {x¢C:(TX-Uo,Y-X ) a 0 for all y in C}

is convex and closed. In particular, if C = X, then for each

u° in X*, the set T-l(uo ) = [xeX:Tx = Uo] is convex andgiven

closed.

Proof. Let X' be the minimal closed linear subspace of

X containing C. The interior of C with respect to X' is non-

empty. It suffices to show , moreover, that the set S(Uo) is

closed in X'.

For each x in C_ let T'x be the restriction of Tx

!

to the space X , i.e. an element of (X')*. It is easily seen that

the mapping T' "C -_ (X')* is hemicontinuous and monotone. Further-

more_ denoting by u' the restriction of u
O O

!

to X _ we have

! !

S(Uo) = [x_C'(T X-Uo,Y-X ) __ 0 for all y in C].

Therefore, without loss of generality we may assume that C° is a

nonempty subset of X.

Under this additional assumption_ let G be the maximal
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monotoneset in X X X

definition of G,

constructed in Proposition 3.3. By the

s(uo) : {xcX:[X,Uo]_G}.

Hence, by Proposition 3.2, S(Uo) is a convex closed subset of X.

Proposition 3.5 (Browder [14]). Let C be a subset of a

Banach space X and T:C _X* a monotone hemieontinuous mapping.

Then for every weakly compact subset D of C° , T(D) is a closed

subset of X*. In particular, if X is a reflexive Banach space,

then for every closed convex and bounded subset D of C °, T(D)

is closed in X*.

Proof. Let u ° be an element of the closure of T(D),

u = .lira Tx.
O 1 -_ee 1 (xigD for i = 1,2,...).

By the weak compactness of D, we may assume that xi _ Xo for

some x ° in D. Now, for every x in C, from the sequence of

inequalities

(Tx-Txi,x-xi) __ 0 (i = 1,2,...)

in the limit we obtain

(TX-Uo,X-X o) -_ O.
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= lies in T(D).Hence, by Lemma 5.2, we have u° Tx ° so that u °

The second assertion of Proposition 5._ follows immedi-

ately from the weak compactness of closed convex and bounded sub-

sets of a reflexive Banach space.

The assumption of the monotonicity and hemicontinuity of

a mapping T, when considered for finite dimensional Banach spaces,

imply a much stronger continuity property expressed by the follow-

ing :

Proposition 3.6 (Kato [32]).

tone hemicontinuous mapping of a set

Banach space X into X*. Then T

point of C.

Let T:C _X* be a mono-

C in a finite dimensional

is continuous at every interior

Proof. If X is of finite dimension, then _ is also

of finite dimension so that in X* the weak* and the strong

topologies coincide. Thus we have to show that Tx. _Tx when-
1 0

ever x. _x in C°.
i 0

First of all we shall show that the sequence [Txi} is

bounded. Suppose the contrary. Upon passing to a suitable sub-

sequence, if necessary, we may assume without loss of generality

that si IITxill-I= _ 0 as i _ +_ and that the sequence [ui] =

[siTxi] is convergent, say, to Uo. Obviously IIUoll= i since

lluilI = i (i = 1,2,...). By the monotonicity of T, for any x in

C, we have

0 -_ si(Tx-Txi,x-xi) =(siTx-ui,x-xi) (i = 1,2,...).
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But s iTx _ 0 and x.l --> Xo as i -_ +_,

(Uo,X-Xo) <--0 for all x in C. Since

u 0 = O, in contradiction with llUolI : 1.

so that in the limit

xoeC °, this implies that

To complete the proof, it suffices now to show that every

convergent subsequence of the sequence [Txi} is necessarily con-

vergent to Tx . Without loss of generality we may assume that the
o

sequence [Txi} itself is convergent, say, to u o. Then, by the

monotonicity of T, for every x in C, we have

(Tx-Txi,x-xi) _ 0 (i = 1,2,...)

and hence, in the limit,

(TX-Uo,X-Xo) a O.

Therefore, by Lemma 3.2, TXo = Uo' and the proof is completed.

In conclusion, let us remark that in general the con-

tinuity of a function in a finite dimensional Banach space does not

follow from its hemicontinuity as shown by the example of the real-

valued function in R 2 defined in the polar coordinates by the

formula

cos2 2 2 T(O,O) = 0T(r,qD) = rsin 2q_/( + r sin qD),

which is not continuous at the origin.
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4. Examples of monotone mappings

Let T be a linear mapping of a Banach space X into its

dual space X*. For T inequality (3.6) reduces simply to the

following one:

(3.11) (_x,x)_ 0 for all x in X.

X _In the sequel a linear mapping T:X _ will be said to be

positive if (3.11) holds 3 and strictly positive if

(Tx,x) > 0 for all x in X, x_ O.

Similarly, for a linear mapping T:X _ X*, condition (3.7)

is simply equivalent to the inequality

(Tx,x) _ d(llxll)llxll for all x in X.

Hence, for s such that sd(s) = i, we have

(T(sx/ll_ll),_x/llxll)-_1 for all x in X, x % O,

and this implies that

(3.12) (_,x) __allxll2 for all x in X

-2
with d = s .
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X _A linear mapping T:X _ satisfying condition (3.12)

will be called strongly positive.

Assume that at an interior point x of C the monotone

X*mapping T:C _ has the Fr_chet derivative, i.e. that there exists

a linear continuous mapping T :X _ such that
X

(3.13) T(x+h) - Tx = T h + R h (x+hcC)
x x

with llRxhll: o(llhll) as Ilhll-_0. Since for any y in X, x + ty

belongs to C for t sufficiently small, from inequality (3.6) and

(3.13) we obtain

0 G (T(x+ty)-Tx,ty) = t2[(Txy,y) + (t-iRx(ty),y)].

Since llt-iRx(tY)ll = t-lo(t)_0 as t _0, we have therefore

(Txy,y) _ 0 for all y in X.

In other words, the Fr$chet derivative Tx of a monotone mapping

T:C _X* at an interior point x of C is a positive linear map-

ping.

X*Conversely, suppose that the mapping T:C _ of a con-

vex subset C of a Banach space X into _ has a positive

Fr6chet derivative T at every point x of C. Then for any x
x

and x + h in C, the real-valued function

_(t) = (T(x+th)-Tx,h)
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is defined and differentiable in the interval [0_i]_ and nonde-

creasing since for each t in [0,i],

$'(t) = (Tx+thh,h) __ O.

Therefore, from _(0) = 0 it follows that @(i) _ 0 which means

that

(T(x+h)-Tx,h) __ O.

This clearly implies that T is a monotone mapping.

The same argument shows that if the Fr_chet derivative of

a mapping T:C _ X* exists and is strictly positive at every point

of a convex set C_ then T is a strictly monotone mapping.

The above relationship between the monotonicity of a map-

ping and the positiveness of its Fr_chet derivative is a substitute

for the classical theorem of analysis which states that a differ-

entiable real-valued function defined in an interval of the real

line is monotone if and only if its derivative does not change sign

in that interval.

An analogous relationship exists between the convexity of

a functional and the positiveness of its G_teaux derivative

v

(Kacurovskii [29] , [30] and Minty [45]).

Let us recall that a functional

vex if

f:X _ R is called con-

f[tx+(l-t)y] __ tf(x)+(l-t)f(y)



-86-

for all x,y in X and any te[0,1]. Clearly f is convex if

and only if its restriction to every straight line in X is a con-

vex function on R.

For a given functional f:X-* R, its GSteaux derivative

f' (x) at a point x in X is a linear continuous functional on

X such that

(f' (x),h) = tl_mo l(f(x+th)-f(x))

for all h in X. If the G_teaux derivative of f exists every-

where in X, the mapping x _ f'(x) from X to X is called

the gradient mapping of f and is denoted by grad f. Conversely,

X*the mapping T:X _ is called potential if it is the gradient

of a functional; i.e., if T = grad f_ for some f:X _R.

It turns out that any functional f:X _ R with monotone

G_teaux derivative is convex. Indeed, the restriction _(t) =

+th (-_ < t < +_) is
f(Xo+th ) of f to a straight line x = x °

then a differentiable function and

lim i
@'(t) = s -* o _[f(Xo+(t+s)h)-f(Xo +th)] = (f'(xo+th)'h)"

Hence_ for all tl,t 2 in R_ t! < t2_ we have

,'(t2)-_'(tl) = (f'(Xo+t2h),h) - (f' (Xo+tlh),h)

= (t2_tl)-l(f ,(Xo+t2h)-f' (Xo+tlh), (t2-tl)h) __ 0.
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Therefore, ,' (t) is a nondecreasing function and hence continuous

(by the Darbo,_x property of the derivative). This implies that

,(t) is a convex function and completes the proof.

Conversely_ if f:X _ R is a convex functional with the

A ° .

Gateauxdermvatlve_ then the function ,(t) = f(Xo+th ) is differ-

entiable and its derivative @'(t) = (# (Xo+th),h) is a nondecreas-

ing function. In particular, 4'(0) _ _' (i) which means that

(f'(xo+h)-f'(Xo),h)_ O

and this implies that

Let a(x,y)

Cartesian square X2

with respect to y for each fixed x. We can associate with

the mapping T:X _X* uniquely determined by

X _f"X -_ is a monotone mapping.

be a real-valued function defined in the

of a Banach space X_ linear and continuous

a(x,y)

a(x,y)= (_,y) for all x_y in X.

It is clear that the mapping T is monotone if and only if

a(x,x-y) - a(y,x-y) __ 0 for all x_y in X_

and strongly monotone if and only if

a(x,x-y) - a(y,x-y) __ d(iix-yll)ILx-yllfor all x,y in X
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and some continuous increasing nonnegative function d(t)_ t __ O,

such that !im d(t) = +_ as t _+_.

5. Coerc ire mappings

Let C be an arbitrary subset of a Banach space X.

Definition 3.5. A mapping T:C _ X is called coercive if

(3.z4) z_ (_,x)/llxll = +_

as Ilxll _ +_.

Equivalently_ a mapping T.C -*X* is coercive if there

exists a real-valued continuous function c(t) defined on R+

with lim c(t) = +_ as t -_+_ and such that

b.15) (_,x) __e(llxll)llxll for all x in C.

It is clear that the above definition makes sense only if

C is not bounded. It is convenient_ however_ to call formally

coercive every mapping defined only on a bounded subset of X.

For a linear mapping T:X _ X*_ condition (3.15) is

equivalent (see the preceding Section) to inequality (3.12), since

(3.14) implies that c(t) > 0 for sufficiently large t. Therefore,

for linear mappings the notions of strong positiveness and coercive-

ness coincide.

X*It is easily seen that if the mapping T:C _ is

X*
coercive_ then for each u in X* the mapping Tu:C _ defined
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by Tx= Tx+ u
u

the relationship

is also coercive. This follows immediately from

(_+u,x) = (_,x) + (u,x) = (_,x) + o(llxll)

and condition (3.14).

The condition of coerciveness of a mapping T:C _ is

basically a condition on the behavior of T at infinity. Never-

theless, in an implicit manner the zero vector of X plays in this

condition an important role, since condition (3.14) is not invariant

under translations in X. In other words, condition (3.14) does not

imply, in general, that

(3.16) lira (_,x-y)/ll_-yll = +-
Ilxll _

for every fixed y in X.

For instance, let us consider in the plane R2

ping T:R 2 _ R 2 defined by

the map-

T is coercive since

(T(_,_),(_,q)) = _2+q2.

On the other hand 3 however,
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(m(_,a),(_,_)-(-n,_)/,J 2+2) = o

so that for any given point ((_,_) on the unit circle_ we have

(m(_,_),(_,_)-(oc,_)) = o

for all (_,_) on the half line with origin at (O,O) and forming

the angle v/2 with the vector (_,_). Geometrically these prop-

erties of the mapping T are almost obvious_ since we obtain T

by defining it first on the half line (_O)_ > 0 in such a way

that T(_,O) is perpendicular to the vector (_,O)-(O,l) and then

extending this definition to the whole plane by a simple repetition

of this procedure on every ray issuing from the origin of coordi-

nates.

It turns out_ however_ that for monotone mappings the

condition of coerciveness implies in a certain sense a uniform coer-

civeness; we have the following"

Proposition 3.7. If T:C _X*

mapping_ then for any fixed y in C°_

Proof. Since IIx-yll/llxll

finity, (3.16) is equivalent to

is a coercive monotone

relation (3.16) holds true.

goes to 1 as IIx!l goes to in-

lira (_,x-y)/llxll = +-.
I1_11-_
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If y_C, then from the inequality

o __(_x-_,x-y)=(Tx,x-y)- (_,x)+ (_,y)

it easily follows that

(3.17) lim inf (T_,x-y)/ll_ll >
Ilxll_

such that

Suppose now that for a Yo in C°

llxrill-_+_ as n -_+_, we have

and a sequence

lira(TXn,Xn-Yo)/liXnlI< +_.(3.18) n _

Since (_Xn,Xn)/lixnll-_ +_ as n _ +_, (3.18) implies that

lim (TXn,Yo) = +_.(3.19) n -_

For s > 0 sufficiently small, y = (l+s)y ° belongs to C

that, from (3.17)_ (3.18) and (3.19) , we have

-_< lira inf (TXn,Xn-(l+S)Yo)= lira (TXn,Xn-Yo)-n-_ n-_

- slim (TXn,Yo) = -_
n _

and this contradiction completes the proof.

[Xn] C C

SO
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From the proof of Proposition 3.7 it is clear that the

assumption y_C ° may be replaced by the assumption that y is an

interior point of the set C N F_ where F denotes the straight

line through the origin and y. On the other hand_ the mapping

T:R 2 _ R2 considered above shows that Proposition 3.7 is no longer

true if y does not belong to C: the restriction of T to the

ray [(_,0):_ _ O) is a monotone mapping but the relation (3.16)

does not hold for y = (0,i).

Proposition 3.8. If O_C_ then every strongly monotone

mapping T:C _ X* is coercive.

Proof. Setting y = 0 in the strong monotonicity con-

dition (3.7) we obtain the coerciveness condition (3.15) with

c(t) = d(t).

6. Inequalities for monotone mappings

The main result of the theory of monotone mappings is

that every coercive monotone, mapping T:X _X* of a reflexive

Banach space X into its dual space X* is necessarily surjective_

i.e. maps X onto X In a highly refined and localized form this

basic property of monotone mappings is expressed by the following

fundamental:

Theorem 3.1 (Browder [12], Hartmand and Stampacchia [26]).

Let C be a closed convex subset of a reflexive Banach space X

and T:C _ X a monotone hemicontinuous and coercive mapping. Then

for each given uo in X_ there exists an xo in C such that

I
I

I
I
I

I
I

I
I

I
I
I
I
I
I

I
I
I
I



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

-93-

(3.2o) (TXo-Uo,X-Xo) __0 for all x in C.

Before proceeding to the proof of Theorem 3.i, let us

X*make a few preparatory remarks. The mapping T':C _ given by

T'x = Tx-u ° for all x in C is also hemicontinuous monotone and,

as observed in the preceding section, coercive. For this reason,

without loss of generality we may consider instead of (3.20) the

inequality

(3.21) (TXo,X_Xo) m 0 for all x in C.

Furthermore, let Y be a closed subspace of X (note

that if X is reflexive, then so is Y as it easily follows from

Theorem 1.4) and let, for every x in C N Y, TyX be the restric-

tion oi" Tx to Y. Then Ty is a monotone hemicontinuous and

.
coercive mapping of C N Y into Y , since

(WyX-W_,__y): (wx-_,x-y)__o, (_,x)/IIxll: (Wx,x)/IIxll

for all x,y in C O Y. In particular, when Y is the minimal

closed subspace of X containing C_ then Ty is a monotone hemi-

continuous mapping of C into Y and inequality (3.21) is simply

equivalent to the following one:

(TyXoJX_Xo) _m 0 for all x in C.
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This implies that without loss of generality we may assume that C

has interior points in X.

Finally, if Yo is an interior point of C, then the

mapping T defined by Tx = T(x+Yo) maps the set C = [xeX:x+YoeC ]

into X*, is hemicontinuous monotone and, by Proposition 3.7, coer-

cive. Moreover, inequality (3.21) has a solution in C if and only

if the inequality

(TXo,X-Xo) __o
for all x in

has a solution in C. Therefore, without loss of generality we may

assume that the zero vector of the space X is an interior point of

C,

tion x of inequality (3.21), we have
o

civeness of T, this implies that x
O

with

Under the additional assumption that OeC, for any solu-

(TXo,Xo) __ O. By the coer-

lies in the ball B(O,p)

p: inf [rcR+:(Tx,x) > 0 for all xeC, llxll> r].

Thus, every solution of inequality (3.21) is a solution of the in-

equality

(3.22)

Conversely, if

(TXo,X-Xo) _ 0 for all x in C N B(O,D+I).

x ° is a solution ,of inequality (3.22), then IIXolI __P
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that for any x in C\B(O,p+l), the pointso x
o

lies in C _ B(0_p+I) and, therefore,

+ (X-Xo)/IiX-Xoll

(mXo,(X-Xo)/llx-xoll)__o

which implies that (TXo,X-Xo) a 0.

equality (3.22) is necessarily a solution of inequality (3.21).

this reason_ without loss of generality we may assume that C

bounded subset of X.

Summing up_ to prove Theorem 3.1_ we have to prove the

existence of a solution to inequality (3.21) under the assumption

that C is a bounded closed and convex subset of X containing

the origin 0 in its interior. The proof of this reduced version

of Theorem 3.1 will rest upon the following:

Thus_ every solution of in-

For

is a

Lemma 3.3. Let C be a bounded closed and convex subset

of a finite dimensional Banach space X with 0 in its interior_

and let T be a monotone hemieontinuous mapping of C into X*.

Then there exists an Xo in C such that ..(TXo,X-Xo) _ 0 for all

x in C.

First proof (Browder [12]). We may assume (see Chapter I,

Section 6) that X is a finite dimensional Euclidean space and that

T is a monotone hemieontinuous mapping of C into X.

Let G be the maximal monotone set in X2 containing the

graph of the mapping T_ constructed in Proposition 3.3. Since for
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each positive integer n, the set nG= [[x,nu]:[x,u]_G] is also

maximal monotone, by Proposition 3.2 there exists a sequence

[[Xn,TXn+Un] ] C C X X such that

(3.23) x + n(TXn+Un)= 0 (n = 1,2,...).n

Extracting_ if necessary, a suitable subsequence from the sequence

__[Xn], we may assume that Xn -_Xo_C as n _+_. From (3.23) it

follows immediately that Tx + u _ 0 as n _ +_. Since
n n

(Tx-(TXn+Un),X-Xn) _ O for all x in C,

in the limit we have

(Tx,x-Xo) __ 0 for all x in C.

By Lemma 3.2_ therefore, inequality (3.21) holds for all x in C,

and the proof is completed.

Second proof (Hartman and Stampacchia [26]). As in the

first proof_ we assume that X is a Euclidean space.

The interior C ° of the set C is a union of an infinite

sequence C1 C C2 C ... of convex closed subsets of C° such that

has continuous tan-O_C and for each n _ i, the boundary _n

gent hyperplane. By Proposition 3.6_ the mapping T is continuous

in C ° and hence in each Cn (n = 1,2,...).
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an X
n

Suppose now that for every n E l,

oh_such * _*

there exists in C
n

(TXn,X-Xn) _ 0 for all x in C
n

or, which is the same (see Lemma 3.2), such that

(3.24) (Tx,x-Xn) _ 0 for all x in Cn.

Upon passing_ if necessary 3 to a suitable subsequence of [Xn} _ we

may assume that x _ x EC as n _ +_. Then, from (3.24) in the
n o

limit we obtain

(Tx_x-Xo) __O
for all x in C° .

By the hemicontinuity of T, the last inequality also holds for all

x on the boundary of C_ and therefore, again by Lemma 3.2_ x
O

is a solution of inequality (3.21).

Thus_ to complete the proof_ it suffices to prove Lemma 3.3

under the assumption that the mapping

necessarily monotone) and that the set

hyperplane.

For

only if

x° in 8C,

T:C _ X is continuous (not

C has a continuous tangent

inequality (5.21) is satisfied if and

Tx 0 =-kNx 0
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where k _ 0 and Nx is the unit normal vector to _C at x
O O

directed outward of C. Therefore, if (3.21) fails to hold for all

x° in _C, then, for 0 _ t _ I, the continuous vector field

Ttx = (l-t)Tx + tNx

defined on _C, does not vanish so that the index of T on _C

with respect to OcC ° is equal to the index of the vector field N.

But the latter is different from zero and hence the index T is al-

so different from zero. This means that the equation Tx = 0 has

at least one solution x in C° which clearly is a solution of
o

inequality (5.21).

Proof of Theorem 5.1. As observed above, we may restrict

ourselves to solve inequality (3.21) under the additional assumption

that C is bounded and contains 0 in its interior.

Let _r be the family of all finite dimensional subspaces

of X ordered (partially) by inclusion. For any F in _r , let

CF = C N F. The mapping TF:C F _ F*, defined for every x in CF

by denoting by TFX the restriction of Tx to F, satisfies all

assumptions of Lemma 3.3. Therefore, for each F in _, the set

SF of xF in CF such that

(_,x-x F) __o for all x in CF

is nonempty.
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For each F in _, denote by VF the weak closure of

! !

the _1_.ion of all S_, for FC F _ F _ _. The family _/=

[VF:Fe_ ] of weakly closed subsets of the set C has obviously

the finite intersection property. Since X is reflexive s C is a

weakly compact set. Therefore_ there exists in C an element x °

which lies in VF for all F in _.

Let now x be an arbitrary element of C and F a

finite dimensional subspace of X which contains x. For every

!

xF, in SF, with F C F 3 by Lemma 3.2_ we have

(_,x-x F,) __o.

Since xo lies in VF_ from this inequality it follows that

(Tx_X-Xo) _ O_

and this inequality holds true for all x in C. Again by Lemma 3.2_

we have therefore (TXo_X-Xo) _ 0 for all x in C a and the proof

is completed.

Corollary 3.1. Under the assumptions of Theorem 5.i_ for

each given u° in X*_ the set S(Uo) of solutions of inequality

(3.20) is a nonempty bounded convex and closed subset of the set C.

Proof. Theorem 3.1 states that S(Uo) is nonempty. From

its proof it follows that S(u o) is bounded. Finally_ from

Proposition 3.4 it follows that it is closed and convex.
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X _It is also easily seen that if the mapping T:C _ is

strictly monotone then the solution of inequality (3.20) is unique•

Let us observe that the proof of Theorem 3.1 is noncon-

structive in nature. It is not difficult_ however, to point out

simple but important cases for applications in which it provides us

with a method of construction of solution of inequality (3.20). It

is so_ for instance_ when the mapping T is strictly monotone and

continuous and the space X is separable. In this case we can

choose a sequence FI;F2,... of finite dimensional subspaces of X

such that X is the closure of their union. For every F i (i =

i;2;...) we can then find in the set F i n C the unique element

x. such that
I

(TX-Uo_X-Xi) _ 0 for all x in F. n C.
l

We claim that the sequence [xi] is weakly convergent to the unique

solution of inequality (3.20). It suffices obviously to show that

every weakly convergent subsequence of this sequence is convergent

to the solution of (3.20). To this end_ suppose that the sequence

[xi] is weakly convergent, say, to Xo. Then; from the last in-

equality we obtain

(TX-Uo,X-Xo) _ 0

oo

for all x in U F i n C.
i=l

By the continuity of T, this inequality holds true for all x in

C By Lemma 3.2_ this implies that x satisfies inequality (3.20)
• 0

I
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and completes the proof.

7. Surjectivity property of monotone mappings

For monotone mappings defined on the whole space

easily derive from Theorem 3.1 the following fundamental:

X we

Theorem 3.2 (Minty [43], Browder [5]). Let T be a mono-

tone hemicontinuous and coercive mapping of a reflexive Banach space

X into its dual space _. Then T maps X onto X . For each

given u in X* T-I
o 3 the set (Xo) = [xeX:Tx = u ] is bounded

O

closed and convex.

Proof. By Theorem 3.1, for each given u in X _ there
0

exists Xo in X such that ..(TXo-Uo,X-Xo) __ 0 for all x in __,

and this is possible if and only if Tx = u . The second assertion
O O

follows immediately from Corollary 3.1.

For strongly monotone mappings Theorem 5.2 can be con-

siderably strengthened by further information on the inverse mapping.

Theorem 3.3 (Minty [43], Browder [4]). Let T be a

strongly monotone hemicontinuous mapping of a reflexive Banach space

X into its dual space X*. Then T is one-to-one_ maps X onto

X , and the inverse mapping T-I:x * -_ X is continuous and maps

bounded sets of X onto bounded sets of X.

Proof. By assumption_ for a continuous strictly increas-

ing function d(t) such that d(O) : 0 and lira d(t) : +_ as

t _ +_ we have
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d(llx-Yll)llx-Yll -_ (Tx-Ty,x-y) _-[ITx-TYIlllx-Yll for all x,y in X.

Hence

_(llx-yll)_ IITx-TYll

so that T is one-to-one and

llT-lu__-ivll_ d-l(ilu_vll)

for all u;v in R(T) C X*. This implies that the mapping T -I is

continuous and maps bounded sets into bounded sets.

Finally; the surjectivity of T follows directly from

Proposition 3.8 and Theorem 3.2.

For strongly positive linear mappings Theorem 3.3 gives

the following generalization of the so-called Lax-Milgram lemma

(see [39]).

X*Corollary 3.2. If T:X _ is a continuous linear and

strongly positive mapping of a reflexive Banach space X into its

dual space X*_ then T maps X onto X*

A direct proof of this corollary runs as follows (Browder

[i], [19]). From the inequalities

dllxll2 _-(_,x) __II_llllxll

I
I

I
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it follows that dilxll _ if_ll for all x in X. Hence T is one-

+ .... and, m_ov_ its range R(T) = [Tx'xeX} is _ rlnq_ linear

subspace of X*. Indeed, if Txn o-_ u in X then the sequence

[Xn] is bounded so that upon passing_ if necessary_ to a suitable

subsequence we may assume that the sequence [Xn] is weakly con-

vergent, say, to x in X. By an easy application of the second
o

version of Theorem 1.2_ we conclude that Tx = u .
o o

Suppose now that R(T) _ X . Then, since X = X,

there exists in X a vector y # 0 such that (Tx,y) 0 for all

x in X. In particular, (Ty,y) = 0. Hence

o = <Ty,y)_ dflYll2

which yields a contradition and completes the proof.

In an obvious manner, Theorem 3.2 is equivalent to the

X _statement that if T'X -_ is a monotone hemicontinuous and coer-

cive mapping of a reflexive Banach space into its dual space, then

for each given u in X the functional equation Tx = u has a
O o

solution in X. By a somewhat more sophisticated argument we can

prove the following corollary to Theorem 3.2 which allows us to

localize the solution of the equation Tx = 0 and, by an easy

modification, the solution of the more general equation Tx = u .
O

Corollary 3.2 (Minty [43], Browder [5]). Let T:X _ X

be a hemicontinuous monotone mapping of a reflexive Banach space X

into its dual space X , and let



-i04-

(3.25) (_x,x):_o

on the boundary _C of a bounded closed convex subset C of X

such that 0cC °. Then the equation Tx = 0 has a solution in C.

I

I
I

Proof. From the proof of Theorem 3.1, it is clear that

it suffices to prove this statement for finite dimensional Euclidean

spaces.

Let X be a finite dimensional Euclidean space. For any

> O, let Tk:X _X be defined by T_x = Tx + _x for all x in

X. Then from inequality (3.25) it follows that

(3.26) (T_x,x)= (_,x)+ _llxll2 > o

on the boundary _C of C. By Lemma 3.3, applied to the restriction

of T_ to C, there exists in C an element xk such that

I

I

I

(Txxx,x-xx)__o for all x in C.

Setting in this inequality x = O_ by confrontation with inequality

(3.26) we conclude that x_ is an interior point of C which im-

plies_ by Lemma 3.2_ that T_x_ = O; i.e. Tx_ = -_x_. Now_ choos-

ing a sequence [_n] _ 0 such that the corresponding sequence

[xK ] is convergent, say_ to x ° in C, we have first
n

I

I

I

I

I

_ : -X_Xn -_O, |
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and then, by Proposition 3.6, Tx = O.
O

_, _o....u_on, let us observe that the coerciveness con-

dition imposed upon the mapping T in Theorem 3.2 is essential and

cannot be replaced by any weaker condition of similar type. This

follows immediately from a simple remark that if T is a monotone

mapping of the real line R into R, then the coerciveness con-

dition is equivalent to the assumptions that

xl__>_iInooTx = +oo and lira Tx : _oo,
X--> .too

which are indispensable for the surjectivity of the mapping T.

8. Nonexpansive and monotone mappings in Hilbert spaces

In Hilbert spaces an intimate relationship between mono-

tone and nonexpansive mappings is expressed by the following:

Proposition 3.9 (Minty [42]). Let C be a subset of a

Hilbert space X and U:C _ X a nonexpansive mapping. Then the

mapping T = I-U is monotone.

we have

Proof. It suffices to observe that for all x,y in C,

(_x-_,x_y)= (x-y-(ox-uy),x_y)_-IIx_yil2

-_llx-ytJ2 -llux-_ilJlx-yil_-o.

- (ux-uy,x_y)

It should be noted, moreover, that the mapping T is
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continuous_ since I and U are continuous mappings.

Proposition 3.9 enables us to given an alternative proof

of Proposition 2.5 (Browder [13]). To this end, suppose that the

sequence [Xn] C C is weakly convergent to x ° in C. By Theorem

2.15_ we may assume that the nonexpansive mapping U is defined on

the whole space X. Since T = I-U:X _ X is a monotone mapping,

for the weakly compact set D = [Xn:n = 1,2_...], T(D) is a closed

subset of X by Proposition 3.5. The assumption that the sequence

[Xn-UXn) is convergent to Yo as n _+_ is then equivalent to

the assumption that Yo_T(D)_ and this clearly implies that TXo =

YO"

In a similar way we can derive from Propositions 3.5 and

3.9 an alternative proof of the special case of Theorem 2.2(Browder

[13])" if U:C _ C is a nonexpansive mapping of a closed bounded

convex subset C of a Hilbertspace X into C_ then U has a

fixed point in C. Indeed_ without loss of generality we may assume

that OcC and that U is defined in X. For any r_[O,l), the

mapping Ur:C _ X defined by UrX = rUx for all x in X, is

contractive and maps C into itself. By the Banach contraction

principle, for every r_[O_l), there exists in C a unique fixed

point xr of Ur; Xr = rUXr. Obviously, (l-U)x r = (r-l)UXr =

(l-i/r)x r _ 0 as r _ l, so that 0 lies in the closure of the

set (I-U)(C). Since, by Proposition 3.5, the set (I-U)(C) is

closed, O lies in it and this means that x - Ux = 0 for some
o O

x in C and completes the proof.
o

I

I
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Let us recall_ by the way_ that due to Theorem 2.12 we

know even more: if x is the fixed point of U in C closest to
O

the origin_ then x _x as r _ i.
r o

9- Semimonotone mappings

The main results of the theory of monotone mappings can

be extended without any considerable changes in the techniques of

their proofs to broader classes of mappings whose consideration is

motivated by the theory of partial differential equations. In this

Section we will be concerned with the extension of that theory to

the so-called semicontinuous mappings. For the sake of simplicity

we will confine our study to mappings defined on the whole space.

Definition 3.6. A mapping T:X _X* of a Banach space

.
X into its dual space X is called semimonotone if there exists

a mapping S:X 2 *X such that Tx = S(x,x) for all x in X

while S satisfies the three following conditions:

(i) for each fixed y

is hemicontinuous_

(ii) for each fixed x in X, the mapping y _ S(x,y)

iii)

in X, the mapping x _ S(x,y)

is continuous from the weak topology on each weakly

compact subset of X to the strong topology of X*;

for all x,y in X,

(S(x,y)-S(y,y),x-y) __ O.
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Note that every hemicontinuous monotone mapping T:X _X*

is trivially semimonotone with S(x_y) = Tx_ for all x_y in X.

Similarly_ every mapping T:X _ X*_ continuous from the weak

topology on each compact subset of X to the strong topology of

X , is semimonotone with S(x,y) = Ty for all x,y in X.

The following basic result is a direct generalization of

Theorem 3.2.

Theorem 3.4 (Browder [19]). Let X be a reflexive

Banach space and T:X _ X a semJanonotone coercive mapping.

T maps X onto X .

Them

Proof. First of all, by an easy modification of the proof

of Proposition 3.6 we can show that every semicontinuous mapping in

a finite dimensional space is necessarily continuous. T his simply

implies that for every F in the family _ of all finite di-

mensional subspaces of X_ the mapping TF_F _ F* defined for

each x in F as the restriction of Tx to F_ is continuous.

By the coerciveness of Tj for a sufficiently large real

number p, we have (Tx,x) > O on the sphere S = S(O,p). There-

fore, for every F in _, (TFX,X) > O on the sphere F A S.

This enables us_ as in the proof of Corollary 3.2_ to conclude that

for each F in _ there exists in the ball B = B(O,p) an element

xF such that TFX F = O.

To complete the proof• we shall modify in a simple manner

the proof of Theorem 3.1

For each F in _ let
• VF be the weak closure of

I

I

I

I
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! !

the union of all sets SF' for F C F , F _ _ SF = [xeFNB:

TFX = 0}. The family _/= [VF:FE_r ] of weakly closed subsets of

the ball B has the finite intersection property. Since X is a

reflexive space, B is a weakly compact set. Therefore, there

exists in B an element Xo which lies in VF for all F in

Let now x be an arbitrary element of C and F a

finite dimensional subspace of X which contains x. For every

xF, in SF, with F C F', we have

s(x;,,x;,): _, -__;,_,= o.

Hence, by condition (iii) of Definition 3.6, we obtain the inequality

(S(x,x F,),x-x F,) __ O.

Since x° lies in VF, from this inequality and condition (ii) of

Definition 3.6 it follows that

(s(X,Xo),X-Xo) _ o.

By condition (i) of Definition 5.6, the mapping x _ S(X,Xo) is

hemicontinuous. Therefore, Lemma 3.2 implies that TXo = S(Xo'Xo) = 0

which completes the proof.

i0. Densely defined monotone mappings

In this section we will deal with an extension of the sur-

jectivity property of coercive monotone mappings defined in a Banach
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space to mappingswhich are defined only on dense linear subspaces.

The simplest result of this kind is_ated in the following:

Theorem 3.9 (Browder [16]). Let X be a reflexive Banach

space and T a hemieontinuous monotone coercive mapping defined on

a dense linear subspace D of X with values in X* such that

T : L + G; where

(i) L is a closed linear mapping of D(L) = D into X*

such that the adjoint mapping L* is the closure of

its restriction to D(L) n D(L*);

(ii) G is a mapping of D into X* which maps bounded

sets of X into bounded sets of X*.

Then T maps D onto X*.

Proof. It suffices to prove that 0 belongs to the range

of the mapping T. To this end_ we consider the family J of all

finite dimensional subspaces of D_ and we define; for every F

in

TF

independent of

_; the mapping TF:F -_ F* as in the proof of Theorem 3.4.

is continuous for each F in _ and there exists an element

in F such that TFX F = O. Moreover_ there is a constant p

F such that llxFll-<_P for each xF in

SF = (xcF:TFX : 0].

By the reflexivity of the space X_ there exists an x° in X

I

I
!
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I
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such that for every F in _ , x° lies in the weak closure of

the union of all SF, with F' D F, F'¢_

We claim that x ° belongs to D. Indeed, let x be any

element of the set D(L) N D(L*). For any subspace F in _%r con-

taining x and any xF in SF, we have

(3.27) o = (TF_,x)=(_,x)= (_,x)+ (Gx;,x).

On the other hand, by the definition of the adjoint mapping,

(3.28) (SXF,X)= O*,XF).

Furthermore, from condition(ii) it follows that IlaxFII__ _ for

some constant M independent of F. Hence and from (3.27) , (3.28),

we have

I(T%_F)I -_MIIxlI.

Since the left-hand side of this inequality is weakly continuous in

XF, we have

(3.29) I(L*X,Xo)l _-MIIxll for all x in D(L)rlD(L*).

From the second part of condition (i) it follows that inequality

(3.29) holds true for all x in D(L*), and this simply implies
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that x
o

Since L

belongs to the domain D(L**) of the mapping L** : (L*)*.

is closed, D(L**) = D(L) so that x _D(L) = D.
O

Now, if x is an arbitrary element of D 3 F any finite

dimensional subspace of D containing x and XF_SF,

have

then we

0 __ (Tx-TXF,X-XF)= (TX-TFXF,X-XF)= (Tx,X-XF) ,

and hence

(Tx,X-Xo) _ 0 for all x in D.

A straightforward application of Lemma 3.2 gives Tx = 0 and
O

completes the proof (it is easily seen that the replacement in that

lemma of the whole space X by its dense linear subspace D does

not affect its validity).

Combining the proof of the last theorem with that of

Theorem 3.4 we can obtain the following generalization of both:

Theorem 3.6 (Browder [19] ).

space and T

subspace D

where

Let X be a reflexive Banach

a monotone coercive mapping defined on a dense linear

of X with values in X* such that T = L + G_

(i) L is a closed linear mapping of D into X* such

@

that the adjoint mapping L is the closure of its

restriction to D(L) N D(L*)_
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(ii) G is a mapping of X into X_ given by Gx =

H(x,x), where H is a mapping of X2 into X_

such that for fixed y in X_ H(',y) is con-

tinuous from line segments in X to the weak

topology in X _ and for fixed x in X_ H(x_')

is continuous on bounded sets from the weak

topology in X to the strong topology of X*_

G maps bounded sets of X into bounded sets of

X*.

Then T maps D onto X*
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C h a p t e r IV

COMPLEX MONOTONE MAPPINGS

_e concept of complex monotone mappings takes its origin

from a p_er by Zarantonello [6] who has considered continuous map-

pings T of a complex Hilbert space H into itself satisfying the

inequality

l(Tx-_,x-y)l_-o11x-ylI2

for some positive constant c and all x_y in H_ and has shown

that if, in addition, T maps bounded sets into bounded sets_ then

T maps H onto itself. This result has been strengthened and ex-

tended to complex Banach spaces by Browder in [1]-[5].

i. Complex monotone and complex coercive mappings

Let X be a Banach space over the field of complex numbers

.
and X its dual space. Let C be an arbitrary subset of X.

Definition 4.1. A mapping T:C -* X is called complex

monotone if for each positive integer N there exists a continuous

strictly increasing real function _ on R+, _(0) = O, such that

(4.1) I(Tx-Ty,x-y) I __ dN(llx-yIl)llx-yll

for all x,y in C with llxll,llyll__ N.

Definition 4.2. A mapping T:C -* X* is called strongly

complex monotone if there exists a continuous strictly increasing
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function d on R+, d(O) = 0, lim d(t) = +_ as t _+_, such

that

(4.2) i(Tx-Ty,x-Y)i_-_(llx-Yll)llx-Yll

for all x,y in C.

It is clear that any strongly complex monotone mapping is

complex monot one.

Definitions 4.1 and 4.2 apply formally to mappings in

real Banach spaces. It is easily seen, however, that in the most

interesting and important case when C is a convex set and the map-

.

ping T:C _ X is hemic0ntinuous, these definitions give nothing

new in comparison with the definitions of strictly or strongly mono-

tone mappings. Indeed, suppose, for instance, that condition (4.2)

is satisfied by a hemicontinuous mapping T:X -_ X , where X is a

real Banach space of dimension greater than i. The diagonal _ =

[[x,xS:x_X] does not disconnect the space X 2 = X X X. Assume

that for an element [Xo,Yo] of X2\_, (TXo-TYo,Xo-Yo) _ 0. Every

other element [xl,Yi] of X2kA can be connected in X2\_ with

[Xo,Yo] by a polygonal line. By the hemicontinuity of T, the

function (Tx-Ty,x-y) is continuous on this line. Since it does

not vanish, (TXl-TYl,Xl-Yl) is also positive. This implies that

the mapping T is strongly monotone. If (TXo-TYo,Xo-Yo) ( 0,

then the mapping -T is strongly monotone.

It is easy to see that the same argument shows that if for



-122-

a hemicontinuous mapping T:X _ X defined on a real Banach space

X condition (4.1) holds_ then either T or -T is strictly mono-

tone_ and that the sameis true if T is defined on a convex sub-

set C of X with interior points.

X _Definition 4.3. A mapping T:C _ is called complex

coercive if there exists a continuous strictly increasing function

c on R+, lim e(t) = +_ as t _+_, such that

l(_,x)l_-c(tlxlI)ilxll

for all x in C.

It is easily seen that if the mapping T:C _ X is

strongly complex monotone and if OeC_ then T is complex coercive.

Indeed, setting in inequality (4.2) y = O_ we obtain

i(_-_,x)l_-d(llxli)ilxll

and hence

l(_x,x)i_-_d(ilxil)- ll_li}ilxli.

Proposition 4.1. If the mapping T:C _X* is complex

monotone and complex coercive_ then T is one-to-one and its in-

verse mapping T-1 is continuous in the range R(T) of T.
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Proof. If T satisfies condition (4.1), then T is

one-to-one. Furthermore, for x in C_ we have

llTx[lllxll_ l(_x>l _ c(llxll>llxll

and hence ll_Ir _-c(llxll) for x_ O. Since c(t)_+_ as t-_

+_ this implies that the inverse mapping T-1 maps bounded sets

in R(T) into bounded sets in C. Therefore, for each positive

integer n, there exists a positive integer N(n) such that if

u_vcR(T) and llull_llvll__n_ then llT-lulI_IIT-lvll__ N. From in-

equality (4.1) we have

ilT-lu-T-lvllli_-Vfl_ I<_-v,T-lu-T-mv)l_ _(JIT-lu-T-ivll)fiT-lu_T-lvll.

Hence

llT-lu-T-ivll_ _l(lJu-vll).

This implies that the mapping

[_R(_)'llull _-n].

T-1 is continuous in the set

2. Surjectivity property of complex monotone mappings

For complex monotone mappings in reflexive complex Banach

spaces we have the following result analogous to Theorem 3.2.

Theorem 4.1 (Browder [5]). Let T be a complex monotone
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and complex coercive mapping of a reflexive Banach space X into

its dual space X continuous from finite dimensional subspaces

of X to the weak topology of X*. Then T is one-to-one_ has

continuous inverse and maps X onto X*.

In virtue of Proposition 4.1 it remains only to prove

that T maps X onto X*. The proof of this assertion will rest

upon the following:

Lemma 4.1. Theorem 4.1 holds true if X is of finite

dimension.

Proof. The mapping T is continuous by hypothesis. The

mapping T-I exists and is continuousj by Proposition 4.1. Since

X is of the same dimension as X_ by the Brouwer theorem on in-

variance of domain for mappings in Euclidean spaces_ the range

R(T) is an open subset of X

-->
in X ; since if Txn Uo_

by the coerciveness of T_

On the other hand, R(T) is closed

then the sequence [Xn] is bounded,

and we can suppose that x _ x for
n o

= U SOT_ we have Tx ° osome x in X_ by the continuity of
O

that Uo_R(T ). Therefore R(T) = X

Proof of Theorem 4.1. We have to prove that for every

u in X_ Tx = u for some x in X. It suffices to prove_ how-

ever_ that this is true for u = 0 since the assumptions of

Theorem 4.1 are invariant under passing from the mapping T to

the mapping T defined by T x = Tx-u.
U U

As in the proof of Theorem 3.1_ let _ be the family of
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all finite dimensional subspaces of X, partially ordered by in-

clusion. For each F in _ let the mapping TF:F _ F* be de-

fined, for every x in F_ as the restriction of Tx to F. TF

is continuous, complex monotone and complex coercive, since for all

x,y in F, we have

I(_FX-TFY,x-Y)i = l(_-_,x-y)i - _(llx-ylJ)ilx-yll

for N __ max (ilxil,llyll), and

l(TmX,X)l= l<_,x)l_-c(ilxli)llxlI-

By Lemma 4.1, TF is one-to-one and maps F onto F*.

There exists, therefore_ in F a unique solution xF of the equa-

tion

TFX = O.

From the coerciveness of T, we have

o = I (TF%_,%01= I(_,_)1-_ o(llxFII)ll_ll.

Since c(t) _ +_ as t _ +_, there exists an integer M such

that for each F in _x F lies in the ball B = B(O,M).

By hypothesis, X is reflexive. There exists 3 there-



-126-

fore, an element x in X such that_ for every finite dimensional
o

subspace F of X_ x lies in the weak closure VF of the setO

SF = [XF, :F C F' ,F'c_-].

In addition, if F and F' are in _ and F C F'_ then

%_(ilxF-xF,ii)LlxF-xF,H _-I(TF,_-TF,xF,,xF-xF,)I: ](_,xF-xF,)I',

In other words_ we have

_(llxF-xll)ilxF-x]l_-I(%,xF-x)l

for every x in SF. The function lixF-xll is weakly lower semi-

continuous in x and the function (TXF,XF-X) is weakly continuous.

Therefore_ since x lies in the weak closure VF of SF, we haveO

(4.3) _(llxF-xoll)ll_-xoll_-l(__F,_-xo)l.

In particular_ if F contains Xo_ then

(TXF,XF-Xo) = (TFXF,XF-Xo) = 0

and hence, by (4.3), ll_-xoll= o; i.e., xF = xo.

Now_ for every x in X and F containing both x O

and x, we have
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(_o,X) (_,x): (TFxF,x) = (O,x): O;

i.e.,

Tx = 0
O

(TXo,X) = 0 for every x in X. This clearly implies that

and completes the proof.

As an immediate conclusion from Theorem 4.1 and the re-

mark that every strongly complex monotone mapping of the whole

space X into X_ is necessarily complex coercive we obtain the

following:

Corollary 4.1 (Browder [4]). Let T be a strongly com-

plex monotone mapping of a reflexive Banach space X into its dual

space X* continuous from finite dimensional subspaces of X to

the weak topology of X . Then T is one-to-one, has continuous

.
inverse and maps X onto X
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